我正在尝试使用LSTM和密集神经网络在Keras中构建序列到序列模型。编码器对输入进行编码,然后将编码后的状态进行连接,然后将其输入到解码器中,该解码器是一个lstm +密集神经网络,可以及时输出分类标签。下面是我的代码的样子
from keras.utils import to_categorical
from keras.layers import Embedding, Bidirectional, GRU, Dense, TimeDistributed, LSTM, Input, Lambda
from keras.models import Sequential, Model
import numpy as np
from keras import preprocessing
import keras
encoder_inputs_seq = Input(shape=(114,))
encoder_inputs = Embedding(input_dim= 1000 + 1, output_dim = 20)(encoder_inputs_seq)
x, state_h, state_c = LSTM(32, return_state=True)(encoder_inputs)
states = [state_h, state_c]
decoder_lstm = LSTM(32, return_sequences=True, return_state=True)
decoder_dense = Dense(9, activation='softmax')
all_outputs = []
input_state = keras.layers.RepeatVector(1)(state_h)
for i in range(5):
# Run the decoder on one timestep
new_input = keras.layers.concatenate([input_state, keras.layers.RepeatVector(1)(encoder_inputs[:, 1, :])], axis = -1)
outputs, state_h, state_c = decoder_lstm(new_input,
initial_state=states)
outputs = decoder_dense(outputs)
# Store the current prediction (we will concatenate all predictions later)
all_outputs.append(outputs)
# Reinject the outputs as inputs for the next loop iteration
# as well as update the states
states = [state_h, state_c]
input_state = keras.layers.RepeatVector(1)(state_h)
decoder_outputs = Lambda(lambda x: keras.layers.concatenate(x, axis=1))(all_outputs)
model = Model(encoder_inputs_seq, decoder_outputs)
model.summary()
我遇到了以下例外情况
AttributeError: 'NoneType' object has no attribute '_inbound_nodes'
我在哪里错了?
答案 0 :(得分:0)
问题是您要切片张量(encoder_inputs[:, 1, :]
)而没有将其包装在Lambda层中。您在Keras模型中执行的每个操作都必须在一个层中。您可以通过以下方式将for循环内的第一行代码替换来解决此问题:
slice = Lambda(lambda x: x[:, 1, :])(encoder_inputs)
new_input = keras.layers.concatenate(
[input_state, keras.layers.RepeatVector(1)(slice)],
axis = -1)