我一直在使用蟒蛇2.7的Anaconda
$ python
Python 2.7.14 |Anaconda custom (64-bit)| (default, Dec 7 2017, 17:05:42)
[GCC 7.2.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.
当我决定安装tensorflow时(由于某种原因,我使用了非gpu版本)
我使用的命令是:
$ conda install -c anaconda tensorflow-gpu
但是,完成之后(此cmd的输出详细信息如下),我不再需要conda了:
$ conda install -c conda-forge keras
Traceback (most recent call last):
File "/home/me/anaconda2/bin/conda", line 12, in <module>
from conda.cli import main
ModuleNotFoundError: No module named 'conda'
(注意:我也不再拥有Keras),现在正在运行Python 3.7(!?):
$ python
Python 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, 01:22:34)
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
发生了什么事?我如何阻止它再次发生?这之前发生过一次,我最终删除了所有anaconda文件,然后重新安装。我不想养成习惯。
我的conda install
的输出是:
$ conda install -c anaconda tensorflow-gpu
Collecting package metadata: done
Solving environment: done
## Package Plan ##
environment location: /home/me/anaconda2
added / updated specs:
- tensorflow-gpu
The following packages will be downloaded:
package | build
---------------------------|-----------------
_tflow_190_select-0.0.1 | gpu 2 KB anaconda
absl-py-0.7.0 | py36_0 156 KB anaconda
astor-0.7.1 | py36_0 43 KB anaconda
c-ares-1.15.0 | h7b6447c_1 98 KB anaconda
ca-certificates-2018.12.5 | 0 123 KB anaconda
certifi-2018.11.29 | py36_0 146 KB anaconda
cudatoolkit-9.0 | h13b8566_0 340.4 MB anaconda
cudnn-7.1.2 | cuda9.0_0 367.8 MB anaconda
cupti-9.0.176 | 0 1.6 MB anaconda
curl-7.63.0 | hbc83047_1000 145 KB anaconda
gast-0.2.2 | py36_0 138 KB anaconda
git-2.11.1 | 0 9.5 MB anaconda
grpcio-1.16.1 | py36hf8bcb03_1 1.1 MB anaconda
krb5-1.16.1 | h173b8e3_7 1.4 MB anaconda
libcurl-7.63.0 | h20c2e04_1000 550 KB anaconda
libedit-3.1.20181209 | hc058e9b_0 188 KB anaconda
libssh2-1.8.0 | h1ba5d50_4 233 KB anaconda
markdown-3.0.1 | py36_0 107 KB anaconda
mkl_fft-1.0.10 | py36ha843d7b_0 170 KB anaconda
mkl_random-1.0.2 | py36hd81dba3_0 407 KB anaconda
ncurses-6.1 | he6710b0_1 958 KB anaconda
numpy-1.15.4 | py36h7e9f1db_0 47 KB anaconda
numpy-base-1.15.4 | py36hde5b4d6_0 4.3 MB anaconda
openssl-1.1.1 | h7b6447c_0 5.0 MB anaconda
pip-18.1 | py36_0 1.8 MB anaconda
protobuf-3.5.2 | py36hf484d3e_1 610 KB anaconda
python-3.6.8 | h0371630_0 34.4 MB anaconda
qt-4.8.7 | 2 34.1 MB anaconda
setuptools-40.6.3 | py36_0 625 KB anaconda
six-1.12.0 | py36_0 22 KB anaconda
sqlite-3.26.0 | h7b6447c_0 1.9 MB anaconda
tensorboard-1.9.0 | py36hf484d3e_0 3.3 MB anaconda
tensorflow-1.9.0 |gpu_py36h02c5d5e_1 3 KB anaconda
tensorflow-base-1.9.0 |gpu_py36h6ecc378_0 170.8 MB anaconda
tensorflow-gpu-1.9.0 | hf154084_0 2 KB anaconda
termcolor-1.1.0 | py36_1 7 KB anaconda
tk-8.6.8 | hbc83047_0 3.1 MB anaconda
werkzeug-0.14.1 | py36_0 423 KB anaconda
wheel-0.32.3 | py36_0 35 KB anaconda
------------------------------------------------------------
Total: 985.7 MB
The following NEW packages will be INSTALLED:
_tflow_190_select anaconda/linux-64::_tflow_190_select-0.0.1-gpu
c-ares anaconda/linux-64::c-ares-1.15.0-h7b6447c_1
cudatoolkit anaconda/linux-64::cudatoolkit-9.0-h13b8566_0
cudnn anaconda/linux-64::cudnn-7.1.2-cuda9.0_0
cupti anaconda/linux-64::cupti-9.0.176-0
krb5 anaconda/linux-64::krb5-1.16.1-h173b8e3_7
pip anaconda/linux-64::pip-18.1-py36_0
tensorflow-gpu anaconda/linux-64::tensorflow-gpu-1.9.0-hf154084_0
The following packages will be UPDATED:
absl-py conda-forge/noarch::absl-py-0.1.10-py~ --> anaconda/linux-64::absl-py-0.7.0-py36_0
ca-certificates conda-forge::ca-certificates-2018.11.~ --> anaconda::ca-certificates-2018.12.5-0
curl pkgs/main::curl-7.60.0-h84994c4_0 --> anaconda::curl-7.63.0-hbc83047_1000
gast 0.2.0-py27_0 --> 0.2.2-py36_0
grpcio pkgs/main::grpcio-1.12.1-py27hdbcaa40~ --> anaconda::grpcio-1.16.1-py36hf8bcb03_1
libcurl pkgs/main::libcurl-7.60.0-h1ad7b7a_0 --> anaconda::libcurl-7.63.0-h20c2e04_1000
libedit pkgs/main::libedit-3.1-heed3624_0 --> anaconda::libedit-3.1.20181209-hc058e9b_0
markdown conda-forge/noarch::markdown-2.6.11-p~ --> anaconda/linux-64::markdown-3.0.1-py36_0
mkl_fft pkgs/main::mkl_fft-1.0.6-py27hd81dba3~ --> anaconda::mkl_fft-1.0.10-py36ha843d7b_0
ncurses pkgs/main::ncurses-6.0-h9df7e31_2 --> anaconda::ncurses-6.1-he6710b0_1
openssl conda-forge::openssl-1.0.2p-h14c3975_~ --> anaconda::openssl-1.1.1-h7b6447c_0
protobuf conda-forge::protobuf-3.5.2-py27hd28b~ --> anaconda::protobuf-3.5.2-py36hf484d3e_1
python pkgs/main::python-2.7.14-h1571d57_29 --> anaconda::python-3.6.8-h0371630_0
setuptools pkgs/main::setuptools-38.4.0-py27_0 --> anaconda::setuptools-40.6.3-py36_0
six pkgs/main::six-1.11.0-py27h5f960f1_1 --> anaconda::six-1.12.0-py36_0
sqlite pkgs/main::sqlite-3.23.1-he433501_0 --> anaconda::sqlite-3.26.0-h7b6447c_0
tensorflow conda-forge::tensorflow-1.3.0-py27_0 --> anaconda::tensorflow-1.9.0-gpu_py36h02c5d5e_1
tk pkgs/main::tk-8.6.7-hc745277_3 --> anaconda::tk-8.6.8-hbc83047_0
wheel pkgs/main::wheel-0.30.0-py27h2bc6bb2_1 --> anaconda::wheel-0.32.3-py36_0
The following packages will be SUPERSEDED by a higher-priority channel:
certifi conda-forge::certifi-2018.11.29-py27_~ --> anaconda::certifi-2018.11.29-py36_0
git pkgs/main::git-2.17.0-pl526hb75a9fb_0 --> anaconda::git-2.11.1-0
libssh2 pkgs/main::libssh2-1.8.0-h9cfc8f7_4 --> anaconda::libssh2-1.8.0-h1ba5d50_4
mkl_random pkgs/main::mkl_random-1.0.2-py27hd81d~ --> anaconda::mkl_random-1.0.2-py36hd81dba3_0
numpy pkgs/main::numpy-1.15.4-py27h7e9f1db_0 --> anaconda::numpy-1.15.4-py36h7e9f1db_0
numpy-base pkgs/main::numpy-base-1.15.4-py27hde5~ --> anaconda::numpy-base-1.15.4-py36hde5b4d6_0
qt pkgs/main::qt-5.9.4-h4e5bff0_0 --> anaconda::qt-4.8.7-2
tensorflow-base pkgs/main::tensorflow-base-1.9.0-eige~ --> anaconda::tensorflow-base-1.9.0-gpu_py36h6ecc378_0
werkzeug pkgs/main::werkzeug-0.14.1-py27_0 --> anaconda::werkzeug-0.14.1-py36_0
The following packages will be DOWNGRADED:
astor 0.7.1-py27_0 --> 0.7.1-py36_0
tensorboard 1.10.0-py27hf484d3e_0 --> 1.9.0-py36hf484d3e_0
termcolor 1.1.0-py27_1 --> 1.1.0-py36_1
Proceed ([y]/n)? y
Downloading and Extracting Packages
tensorflow-gpu-1.9.0 | 2 KB | ########################################################################################################################################## | 100%
absl-py-0.7.0 | 156 KB | ########################################################################################################################################## | 100%
six-1.12.0 | 22 KB | ########################################################################################################################################## | 100%
git-2.11.1 | 9.5 MB | ########################################################################################################################################## | 100%
_tflow_190_select-0. | 2 KB | ########################################################################################################################################## | 100%
setuptools-40.6.3 | 625 KB | ########################################################################################################################################## | 100%
c-ares-1.15.0 | 98 KB | ########################################################################################################################################## | 100%
cupti-9.0.176 | 1.6 MB | ########################################################################################################################################## | 100%
libssh2-1.8.0 | 233 KB | ########################################################################################################################################## | 100%
gast-0.2.2 | 138 KB | ########################################################################################################################################## | 100%
ncurses-6.1 | 958 KB | ########################################################################################################################################## | 100%
protobuf-3.5.2 | 610 KB | ########################################################################################################################################## | 100%
tensorflow-base-1.9. | 170.8 MB | ########################################################################################################################################## | 100%
ca-certificates-2018 | 123 KB | ########################################################################################################################################## | 100%
python-3.6.8 | 34.4 MB | ########################################################################################################################################## | 100%
cudatoolkit-9.0 | 340.4 MB | ########################################################################################################################################## | 100%
qt-4.8.7 | 34.1 MB | ########################################################################################################################################## | 100%
sqlite-3.26.0 | 1.9 MB | ########################################################################################################################################## | 100%
astor-0.7.1 | 43 KB | ########################################################################################################################################## | 100%
tensorboard-1.9.0 | 3.3 MB | ########################################################################################################################################## | 100%
mkl_fft-1.0.10 | 170 KB | ########################################################################################################################################## | 100%
mkl_random-1.0.2 | 407 KB | ########################################################################################################################################## | 100%
certifi-2018.11.29 | 146 KB | ########################################################################################################################################## | 100%
wheel-0.32.3 | 35 KB | ########################################################################################################################################## | 100%
numpy-base-1.15.4 | 4.3 MB | ########################################################################################################################################## | 100%
numpy-1.15.4 | 47 KB | ########################################################################################################################################## | 100%
curl-7.63.0 | 145 KB | ########################################################################################################################################## | 100%
openssl-1.1.1 | 5.0 MB | ########################################################################################################################################## | 100%
tk-8.6.8 | 3.1 MB | ########################################################################################################################################## | 100%
libedit-3.1.20181209 | 188 KB | ########################################################################################################################################## | 100%
markdown-3.0.1 | 107 KB | ########################################################################################################################################## | 100%
werkzeug-0.14.1 | 423 KB | ########################################################################################################################################## | 100%
krb5-1.16.1 | 1.4 MB | ########################################################################################################################################## | 100%
termcolor-1.1.0 | 7 KB | ########################################################################################################################################## | 100%
pip-18.1 | 1.8 MB | ########################################################################################################################################## | 100%
libcurl-7.63.0 | 550 KB | ########################################################################################################################################## | 100%
tensorflow-1.9.0 | 3 KB | ########################################################################################################################################## | 100%
grpcio-1.16.1 | 1.1 MB | ########################################################################################################################################## | 100%
cudnn-7.1.2 | 367.8 MB | ########################################################################################################################################## | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(好的-我现在看到了对python 3.7的更改,但这仍然是必须要小心的讨厌的事情。是否有某种方法可以迫使它不理会我的Python版本?)
答案 0 :(得分:3)
在不更新conda
软件包的情况下更改Python版本会破坏Conda。。 Python版本更改(2.7.14-> 3.6.8)导致了这样一种情况,即新的python
具有新的site-packages
,该新的conda
不再包含conda
包,而如果您仅更新在2.7.x之内,这不是问题。
Conda包含一组二进制文件(例如,在shell中键入conda
时调用的二进制文件)和同名的Python包。为了使Conda整体正常运行,必须使用Python软件包,并且在您尝试使用conda
时都会加载该Python软件包。
有问题的是,Anaconda上的许多软件包似乎正在触发Python版本更改,但随后没有触发conda
软件包更新。这听起来像是依赖解析程序所忽略的事情-即默认行为应该是保护conda
所在的基本环境的完整性。
可以从中恢复的一个长远想法是,针对与您在 base env中的新Python版本相对应的site-packages
软件包,manually download the tarball缺少的软件包放入lib/python3.7/site-packages
中。对于您的情况,这类似于下载
wget https://anaconda.org/anaconda/conda/4.6.8/download/linux-64/conda-4.6.8-py37_0.tar.bz2
然后打开包装。您要安装的软件包将位于/home/me/anaconda2/lib/python3.7/site-packages/
目录中。如果幸运的话,只需将它们复制到
conda create -n tf36 anaconda::tensorflow-gpu python=3.6
可能会成功。否则,您可能需要调用某种安装过程。没有系统对此进行测试,就我所知。如果您确实可以使用,请进行报告,以便我们将其更新为权威性答案。
不幸的是,我还没有看到任何用户报告能够从完全重新安装或在不同目录中安装Miniconda的新版本后恢复。
首先,只是一般的建议(建议):充分利用虚拟环境。这并不能直接解决问题,但是可以帮助您拥有一个工作流,该工作流不那么容易遇到此类陷阱。首先,您不应该接受如此巨大的改变,而不是基础。就个人而言,我很少在基础架构之外的 base 中安装东西(emacs,与jupyter相关的东西,conda等)。 1 进入特定于项目或至少具有开发类型的环境。
例如,如果我正在显示安装,我会为此创建一个新的环境
conda-meta
或您实际希望使用的任何Python版本。
Conda确实支持程序包固定,这是更直接的方法,通过将Python 2过渡到3,可以确保您再也不会破坏 base 的安装。即,在env的pinned
文件夹中创建文件python 2.7.*
并添加行
Scanner numbIn = new Scanner(System.in);
System.out.println("Enter 5 numbers");
int smallestNumb = 0;
for (int i = 0; i < 5; i++) {
int num = numbIn.nextInt();
smallestNumb = num < smallestNumb ? num : smallestNumb;
}
请注意,一些用户报告了3.6-> 3.7过渡的类似问题,因此我认为此处必须包含次要版本。参见the documentation on pinning。
[1]请注意,我使用的是Miniconda,而不是Anaconda安装程序,因此我从一开始就对 base 拥有更多的控制权。
答案 1 :(得分:0)
我已经通过删除任何 PYTHONHOME sys PATH 解决了这个问题。