使用conda安装软件包如何更改我的python版本并删除co​​nda?

时间:2019-02-06 04:05:06

标签: anaconda conda

我一直在使用蟒蛇2.7的Anaconda

$ python
Python 2.7.14 |Anaconda custom (64-bit)| (default, Dec  7 2017, 17:05:42) 
[GCC 7.2.0] on linux2
Type "help", "copyright", "credits" or "license" for more information.

当我决定安装tensorflow时(由于某种原因,我使用了非gpu版本)

我使用的命令是:

$ conda install -c anaconda tensorflow-gpu

但是,完成之后(此cmd的输出详细信息如下),我不再需要conda了:

$ conda install -c conda-forge keras
Traceback (most recent call last):
  File "/home/me/anaconda2/bin/conda", line 12, in <module>
    from conda.cli import main
ModuleNotFoundError: No module named 'conda'

(注意:我也不再拥有Keras),现在正在运行Python 3.7(!?):

$ python
Python 3.6.8 |Anaconda, Inc.| (default, Dec 30 2018, 01:22:34) 
[GCC 7.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> 

发生了什么事?我如何阻止它再次发生?这之前发生过一次,我最终删除了所有anaconda文件,然后重新安装。我不想养成习惯。

我的conda install的输出是:

$ conda install -c anaconda tensorflow-gpu
Collecting package metadata: done
Solving environment: done

## Package Plan ##

  environment location: /home/me/anaconda2

  added / updated specs:
    - tensorflow-gpu


The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    _tflow_190_select-0.0.1    |              gpu           2 KB  anaconda
    absl-py-0.7.0              |           py36_0         156 KB  anaconda
    astor-0.7.1                |           py36_0          43 KB  anaconda
    c-ares-1.15.0              |       h7b6447c_1          98 KB  anaconda
    ca-certificates-2018.12.5  |                0         123 KB  anaconda
    certifi-2018.11.29         |           py36_0         146 KB  anaconda
    cudatoolkit-9.0            |       h13b8566_0       340.4 MB  anaconda
    cudnn-7.1.2                |        cuda9.0_0       367.8 MB  anaconda
    cupti-9.0.176              |                0         1.6 MB  anaconda
    curl-7.63.0                |    hbc83047_1000         145 KB  anaconda
    gast-0.2.2                 |           py36_0         138 KB  anaconda
    git-2.11.1                 |                0         9.5 MB  anaconda
    grpcio-1.16.1              |   py36hf8bcb03_1         1.1 MB  anaconda
    krb5-1.16.1                |       h173b8e3_7         1.4 MB  anaconda
    libcurl-7.63.0             |    h20c2e04_1000         550 KB  anaconda
    libedit-3.1.20181209       |       hc058e9b_0         188 KB  anaconda
    libssh2-1.8.0              |       h1ba5d50_4         233 KB  anaconda
    markdown-3.0.1             |           py36_0         107 KB  anaconda
    mkl_fft-1.0.10             |   py36ha843d7b_0         170 KB  anaconda
    mkl_random-1.0.2           |   py36hd81dba3_0         407 KB  anaconda
    ncurses-6.1                |       he6710b0_1         958 KB  anaconda
    numpy-1.15.4               |   py36h7e9f1db_0          47 KB  anaconda
    numpy-base-1.15.4          |   py36hde5b4d6_0         4.3 MB  anaconda
    openssl-1.1.1              |       h7b6447c_0         5.0 MB  anaconda
    pip-18.1                   |           py36_0         1.8 MB  anaconda
    protobuf-3.5.2             |   py36hf484d3e_1         610 KB  anaconda
    python-3.6.8               |       h0371630_0        34.4 MB  anaconda
    qt-4.8.7                   |                2        34.1 MB  anaconda
    setuptools-40.6.3          |           py36_0         625 KB  anaconda
    six-1.12.0                 |           py36_0          22 KB  anaconda
    sqlite-3.26.0              |       h7b6447c_0         1.9 MB  anaconda
    tensorboard-1.9.0          |   py36hf484d3e_0         3.3 MB  anaconda
    tensorflow-1.9.0           |gpu_py36h02c5d5e_1           3 KB  anaconda
    tensorflow-base-1.9.0      |gpu_py36h6ecc378_0       170.8 MB  anaconda
    tensorflow-gpu-1.9.0       |       hf154084_0           2 KB  anaconda
    termcolor-1.1.0            |           py36_1           7 KB  anaconda
    tk-8.6.8                   |       hbc83047_0         3.1 MB  anaconda
    werkzeug-0.14.1            |           py36_0         423 KB  anaconda
    wheel-0.32.3               |           py36_0          35 KB  anaconda
    ------------------------------------------------------------
                                           Total:       985.7 MB

The following NEW packages will be INSTALLED:

  _tflow_190_select  anaconda/linux-64::_tflow_190_select-0.0.1-gpu
  c-ares             anaconda/linux-64::c-ares-1.15.0-h7b6447c_1
  cudatoolkit        anaconda/linux-64::cudatoolkit-9.0-h13b8566_0
  cudnn              anaconda/linux-64::cudnn-7.1.2-cuda9.0_0
  cupti              anaconda/linux-64::cupti-9.0.176-0
  krb5               anaconda/linux-64::krb5-1.16.1-h173b8e3_7
  pip                anaconda/linux-64::pip-18.1-py36_0
  tensorflow-gpu     anaconda/linux-64::tensorflow-gpu-1.9.0-hf154084_0

The following packages will be UPDATED:

  absl-py            conda-forge/noarch::absl-py-0.1.10-py~ --> anaconda/linux-64::absl-py-0.7.0-py36_0
  ca-certificates    conda-forge::ca-certificates-2018.11.~ --> anaconda::ca-certificates-2018.12.5-0
  curl                    pkgs/main::curl-7.60.0-h84994c4_0 --> anaconda::curl-7.63.0-hbc83047_1000
  gast                                         0.2.0-py27_0 --> 0.2.2-py36_0
  grpcio             pkgs/main::grpcio-1.12.1-py27hdbcaa40~ --> anaconda::grpcio-1.16.1-py36hf8bcb03_1
  libcurl              pkgs/main::libcurl-7.60.0-h1ad7b7a_0 --> anaconda::libcurl-7.63.0-h20c2e04_1000
  libedit                 pkgs/main::libedit-3.1-heed3624_0 --> anaconda::libedit-3.1.20181209-hc058e9b_0
  markdown           conda-forge/noarch::markdown-2.6.11-p~ --> anaconda/linux-64::markdown-3.0.1-py36_0
  mkl_fft            pkgs/main::mkl_fft-1.0.6-py27hd81dba3~ --> anaconda::mkl_fft-1.0.10-py36ha843d7b_0
  ncurses                 pkgs/main::ncurses-6.0-h9df7e31_2 --> anaconda::ncurses-6.1-he6710b0_1
  openssl            conda-forge::openssl-1.0.2p-h14c3975_~ --> anaconda::openssl-1.1.1-h7b6447c_0
  protobuf           conda-forge::protobuf-3.5.2-py27hd28b~ --> anaconda::protobuf-3.5.2-py36hf484d3e_1
  python               pkgs/main::python-2.7.14-h1571d57_29 --> anaconda::python-3.6.8-h0371630_0
  setuptools            pkgs/main::setuptools-38.4.0-py27_0 --> anaconda::setuptools-40.6.3-py36_0
  six                  pkgs/main::six-1.11.0-py27h5f960f1_1 --> anaconda::six-1.12.0-py36_0
  sqlite                pkgs/main::sqlite-3.23.1-he433501_0 --> anaconda::sqlite-3.26.0-h7b6447c_0
  tensorflow           conda-forge::tensorflow-1.3.0-py27_0 --> anaconda::tensorflow-1.9.0-gpu_py36h02c5d5e_1
  tk                         pkgs/main::tk-8.6.7-hc745277_3 --> anaconda::tk-8.6.8-hbc83047_0
  wheel              pkgs/main::wheel-0.30.0-py27h2bc6bb2_1 --> anaconda::wheel-0.32.3-py36_0

The following packages will be SUPERSEDED by a higher-priority channel:

  certifi            conda-forge::certifi-2018.11.29-py27_~ --> anaconda::certifi-2018.11.29-py36_0
  git                 pkgs/main::git-2.17.0-pl526hb75a9fb_0 --> anaconda::git-2.11.1-0
  libssh2               pkgs/main::libssh2-1.8.0-h9cfc8f7_4 --> anaconda::libssh2-1.8.0-h1ba5d50_4
  mkl_random         pkgs/main::mkl_random-1.0.2-py27hd81d~ --> anaconda::mkl_random-1.0.2-py36hd81dba3_0
  numpy              pkgs/main::numpy-1.15.4-py27h7e9f1db_0 --> anaconda::numpy-1.15.4-py36h7e9f1db_0
  numpy-base         pkgs/main::numpy-base-1.15.4-py27hde5~ --> anaconda::numpy-base-1.15.4-py36hde5b4d6_0
  qt                         pkgs/main::qt-5.9.4-h4e5bff0_0 --> anaconda::qt-4.8.7-2
  tensorflow-base    pkgs/main::tensorflow-base-1.9.0-eige~ --> anaconda::tensorflow-base-1.9.0-gpu_py36h6ecc378_0
  werkzeug                pkgs/main::werkzeug-0.14.1-py27_0 --> anaconda::werkzeug-0.14.1-py36_0

The following packages will be DOWNGRADED:

  astor                                        0.7.1-py27_0 --> 0.7.1-py36_0
  tensorboard                         1.10.0-py27hf484d3e_0 --> 1.9.0-py36hf484d3e_0
  termcolor                                    1.1.0-py27_1 --> 1.1.0-py36_1


Proceed ([y]/n)? y


Downloading and Extracting Packages
tensorflow-gpu-1.9.0 | 2 KB      | ########################################################################################################################################## | 100% 
absl-py-0.7.0        | 156 KB    | ########################################################################################################################################## | 100% 
six-1.12.0           | 22 KB     | ########################################################################################################################################## | 100% 
git-2.11.1           | 9.5 MB    | ########################################################################################################################################## | 100% 
_tflow_190_select-0. | 2 KB      | ########################################################################################################################################## | 100% 
setuptools-40.6.3    | 625 KB    | ########################################################################################################################################## | 100% 
c-ares-1.15.0        | 98 KB     | ########################################################################################################################################## | 100% 
cupti-9.0.176        | 1.6 MB    | ########################################################################################################################################## | 100% 
libssh2-1.8.0        | 233 KB    | ########################################################################################################################################## | 100% 
gast-0.2.2           | 138 KB    | ########################################################################################################################################## | 100% 
ncurses-6.1          | 958 KB    | ########################################################################################################################################## | 100% 
protobuf-3.5.2       | 610 KB    | ########################################################################################################################################## | 100% 
tensorflow-base-1.9. | 170.8 MB  | ########################################################################################################################################## | 100% 
ca-certificates-2018 | 123 KB    | ########################################################################################################################################## | 100% 
python-3.6.8         | 34.4 MB   | ########################################################################################################################################## | 100% 
cudatoolkit-9.0      | 340.4 MB  | ########################################################################################################################################## | 100% 
qt-4.8.7             | 34.1 MB   | ########################################################################################################################################## | 100% 
sqlite-3.26.0        | 1.9 MB    | ########################################################################################################################################## | 100% 
astor-0.7.1          | 43 KB     | ########################################################################################################################################## | 100% 
tensorboard-1.9.0    | 3.3 MB    | ########################################################################################################################################## | 100% 
mkl_fft-1.0.10       | 170 KB    | ########################################################################################################################################## | 100% 
mkl_random-1.0.2     | 407 KB    | ########################################################################################################################################## | 100% 
certifi-2018.11.29   | 146 KB    | ########################################################################################################################################## | 100% 
wheel-0.32.3         | 35 KB     | ########################################################################################################################################## | 100% 
numpy-base-1.15.4    | 4.3 MB    | ########################################################################################################################################## | 100% 
numpy-1.15.4         | 47 KB     | ########################################################################################################################################## | 100% 
curl-7.63.0          | 145 KB    | ########################################################################################################################################## | 100% 
openssl-1.1.1        | 5.0 MB    | ########################################################################################################################################## | 100% 
tk-8.6.8             | 3.1 MB    | ########################################################################################################################################## | 100% 
libedit-3.1.20181209 | 188 KB    | ########################################################################################################################################## | 100% 
markdown-3.0.1       | 107 KB    | ########################################################################################################################################## | 100% 
werkzeug-0.14.1      | 423 KB    | ########################################################################################################################################## | 100% 
krb5-1.16.1          | 1.4 MB    | ########################################################################################################################################## | 100% 
termcolor-1.1.0      | 7 KB      | ########################################################################################################################################## | 100% 
pip-18.1             | 1.8 MB    | ########################################################################################################################################## | 100% 
libcurl-7.63.0       | 550 KB    | ########################################################################################################################################## | 100% 
tensorflow-1.9.0     | 3 KB      | ########################################################################################################################################## | 100% 
grpcio-1.16.1        | 1.1 MB    | ########################################################################################################################################## | 100% 
cudnn-7.1.2          | 367.8 MB  | ########################################################################################################################################## | 100% 
Preparing transaction: done
Verifying transaction: done
Executing transaction: done

(好的-我现在看到了对python 3.7的更改,但这仍然是必须要小心的讨厌的事情。是否有某种方法可以迫使它不理会我的Python版本?)

2 个答案:

答案 0 :(得分:3)

原因

在不更新conda软件包的情况下更改Python版本会破坏Conda。。 Python版本更改(2.7.14-> 3.6.8)导致了这样一种情况,即新的python具有新的site-packages,该新的conda不再包含conda包,而如果您仅更新在2.7.x之内,这不是问题。

Conda包含一组二进制文件(例如,在shell中键入conda时调用的二进制文件)和同名的Python包。为了使Conda整体正常运行,必须使用Python软件包,并且在您尝试使用conda时都会加载该Python软件包。

有问题的是,Anaconda上的许多软件包似乎正在触发Python版本更改,但随后没有触发conda软件包更新。这听起来像是依赖解析程序所忽略的事情-即默认行为应该是保护conda所在的基本环境的完整性。

尝试恢复

可以从中恢复的一个长远想法是,针对与您在 base env中的新Python版本相对应的site-packages软件包,manually download the tarball缺少的软件包放入lib/python3.7/site-packages中。对于您的情况,这类似于下载

wget https://anaconda.org/anaconda/conda/4.6.8/download/linux-64/conda-4.6.8-py37_0.tar.bz2

然后打开包装。您要安装的软件包将位于/home/me/anaconda2/lib/python3.7/site-packages/ 目录中。如果幸运的话,只需将它们复制到

conda create -n tf36 anaconda::tensorflow-gpu python=3.6

可能会成功。否则,您可能需要调用某种安装过程。没有系统对此进行测试,就我所知。如果您确实可以使用,请进行报告,以便我们将其更新为权威性答案。

最后追索权

不幸的是,我还没有看到任何用户报告能够从完全重新安装或在不同目录中安装Miniconda的新版本后恢复。

预防措施

通过更好的实践避免破损

首先,只是一般的建议(建议):充分利用虚拟环境。这并不能直接解决问题,但是可以帮助您拥有一个工作流,该工作流不那么容易遇到此类陷阱。首先,您不应该接受如此巨大的改变,而不是基础。就个人而言,我很少在基础架构之外的 base 中安装东西(emacs,与jupyter相关的东西,conda等)。 1 进入特定于项目或至少具有开发类型的环境。

例如,如果我正在显示安装,我会为此创建一个新的环境

conda-meta

或您实际希望使用的任何Python版本。

直接解决方案:固定

Conda确实支持程序包固定,这是更直接的方法,通过将Python 2过渡到3,可以确保您再也不会破坏 base 的安装。即,在env的pinned文件夹中创建文件python 2.7.* 并添加行

Scanner numbIn = new Scanner(System.in);

System.out.println("Enter 5 numbers");

int smallestNumb = 0;
for (int i = 0; i < 5; i++) {
    int num = numbIn.nextInt();
    smallestNumb = num < smallestNumb ? num : smallestNumb;
}

请注意,一些用户报告了3.6-> 3.7过渡的类似问题,因此我认为此处必须包含次要版本。参见the documentation on pinning


[1]请注意,我使用的是Miniconda,而不是Anaconda安装程序,因此我从一开始就对 base 拥有更多的控制权。

答案 1 :(得分:0)

我已经通过删除任何 PYTHONHOME sys PATH 解决了这个问题。