SPEI的计算结果为NA

时间:2019-02-05 12:25:03

标签: r

我尝试使用spei分析水平衡“ DataWaterBalance”的时间序列(从2013年1月到2017年12月,为期四个月的汇总)。我的结果中的所有NA都来自哪里(尤其是5月,6月和10月)?

这是我的数据集:

> DataWaterBalance
        Jan        Feb        Mar        Apr        May        Jun    

 2013  44.379560  39.407684  21.562829 -24.299970  47.503552 -37.464860
 2014  53.067473  43.866450 -36.911638 -50.963592 -13.763198 -67.691191
 2015  92.641825  35.884504   8.830966 -44.549551 -63.924239 -74.143715
 2016  96.391935  82.837027  35.548819  12.616174 -19.708125  31.203054
 2017  24.116392  50.623918  10.143826 -58.697190 -66.739512 -92.584874

       Jul        Aug      Sep        Oct        Nov        Dec 
2013 -91.634212  -71.434604  31.166592  80.287287  83.802351 54.771282    
2014  43.378232   68.080230 -40.233815  42.079559  41.352519  83.517715 
2015 -80.702792   -3.758470  36.226553   3.940226  86.975420  38.772885 
2016 -57.579186  -69.207669 -39.830591  22.390467  54.360755   9.304138 
2017   6.082707  -20.811211  40.940572  35.029547  80.916921 108.675360

这些是我的结果:

> SPEI <- spei(DataWaterBalance ,scale =4)
> SPEI
             Jan         Feb         Mar         Apr         May         Jun         Jul
2013          NA          NA          NA  0.33216038          NA          NA  0.24659491
2014          NA          NA          NA -1.01494215          NA          NA  0.44540983
2015          NA          NA          NA  0.47583043          NA          NA -1.21875803
2016          NA          NA          NA  1.46151624          NA          NA  1.12388023
2017          NA          NA          NA -0.59834429          NA          NA -0.82578210
             Aug         Sep         Oct         Nov         Dec
2013  0.08609257 -1.10921341          NA -0.12138666  0.81098577
2014  1.45984189  1.35213116          NA -0.64499892 -0.61207794
2015 -1.19831116 -0.10885634          NA -0.14754493 -0.21176235
2016  0.52253486 -0.35520876          NA -1.87008029 -1.26423284
2017 -0.22246731  0.71017826          NA  1.79802481  1.01404395

我做错了什么? 谢谢!

0 个答案:

没有答案