检查数字是否可以划分为素数分区

时间:2019-02-04 13:35:55

标签: python python-3.x partition-problem

有人可以在Python上解决此问题吗?

如果一个正整数m可以写为p + q,其中p> 0,q> 0且p和q均为质数,则可以将其划分为素数。

编写一个Python函数,将整数m作为输入,如果m可以被分割为素数,则返回True,否则返回False。

对此进行了尝试,但不适用于所有测试用例,例如对于3432,它应该返回True,而它返回False。

def partition(num):
    primelist=[]
    for i in range(2,num + 1):
        for p in range(2,i):
            if (i % p) == 0:
                break
        else:
            primelist.append(i)


    for x in primelist:
        y= num-x
        for z in range(2,y):
            if y%z == 0:
                return False

        return True

10 个答案:

答案 0 :(得分:1)

错误在于第二个for循环中。您正在遍历可能的素数x,然后希望检查y = num - x也是素数。

您的逻辑错误是,在第二个for循环中,如果循环y = num - x中的第一个元素不是素数,它将返回False,而不检查任何其他可能的值。

您可以通过将return False语句移出一个循环来更正此问题,但是由于您已经生成了一个小于numprimelist(并且自{{1} },(如果存在素数y = num - x,它将在此列表中),您只需检查该列表的成员身份即可:

y

注意:我建议您使脚本的逻辑更具模块化,将素数列表生成器分离为自己的函数:

    for x in primelist:
        y= num-x
        # Note: num = x + y, thus need only check y prime
        if y in primelist:
            return True
        # If no such y is prime, not possible
        else:
            return False

答案 1 :(得分:1)

另一种方法, 最初,我们存储直到 m 的所有素数元素并检查总和等于 m

的素数对
def primepartition(a):
l=[2]#since 'a' should be >=2 for below loops, we took here 2(1st prime).
for i in range(2,a):
        flag=0
        for j in range(2,i):
            if i%j==0:
                flag=0
                break
            else:
                flag=1
        if flag==1:
            l.append(i)
for i in l:
    for j in l:
        if i+j==a:
            return True
return False

答案 2 :(得分:1)

n=int(input("Enter any number: "))
list=[]
for num in range(0,n + 1):  
 if num > 1:  
     for i in range(2,num):  
       if (num % i) == 0:  
           break  
       else:
           list.append(num)
if (n<= 1):
    print("False")
    #print("It is not positive ")
else:
    for i in list:
        y = num -i
        if (y in list):
            print("True")
            #print(y,"+",i,"=",n)
            #print(i,"+",y,"=",n)
            #print("The number can be expressed as the sum of two prime numbers.")
            break
    else:
        print("False")
        #print("The number can not be expressed as the sum of two prime numbers.")

答案 3 :(得分:0)

我得到的最终解决方案:

def primepartition(m):
    primelist=[]
    if m<0:
        return False
    else:
        for i in range(2,m + 1):
            for p in range(2,i):
                if (i % p) == 0:
                    break
            else:
                primelist.append(i)

        for x in primelist:
            y= m-x
            if y in primelist:
                return True
        return False

答案 4 :(得分:0)

您的代码略有变化:

def primepartition0(m):
    primelist=[]
    if m<0:
        return False
    else:
        for i in range(2,m + 1):
            for p in range(2,i):
                if (i % p) == 0:
                    break
            else:
                primelist.append(i)

        for x in primelist:
            for y in primelist:
                if x != y and x+y == m:
                    return True
        return False   

答案 5 :(得分:0)

下面给出的代码有望为您提供正确的输出。

def factors(n):
    factorslist = []
    for i in range(1, n+1, 1):
        if n % i == 0:
            factorslist.append(i)
    return(factorslist)    

def prime(n):
    if factors(n) == [1, n] and n > 1:
        return(True)

def primelist(n):
    primenolist = []
    for i in range(1, n+1, 1):
        if prime(i) == True:
            primenolist.append(i)
    return(primenolist)

def primepartition(m):
    if m > 0:
        primenolist = primelist(m)
        checklist = []
        for p in primenolist:
            q = m - p
            if q in primenolist and p > 0 and q > 0:
                checklist.append((p,q))
        if len(checklist) > 0:
            return(True)
        else:
            return(False)
    else:
        return(False)

答案 6 :(得分:0)

另一种尝试减少所需代码量的方法:

def primepartition(m):
    if m > 3:
        for number in range(m // 2, m - 1):
            difference = m - number

            for psuedoprime in range(2, int(number ** 0.5) + 1):
                if number % psuedoprime == 0 or difference > psuedoprime and difference % psuedoprime == 0:
                    break
            else:  # no break
                return number, difference  # as good a non-False result as any other...

    return False

答案 7 :(得分:0)

如果您不需要生成实际的素数,而只需要测试是否存在一对素数 p 和 q 使得 p+q == N,您可以根据哥德巴赫猜想使这变得非常简单。所有偶数都可以表示为两个素数之和。因此,如果数字是偶数,则返回 True 并检查 N-2 是否是奇数的素数(因为 2 是唯一的偶数素数,并且这是从奇数开始时会产生另一个奇数的唯一素数)。这将归结为仅针对奇数的 N-2 的单个素数测试。

def primePart(N):
    return N%2==0 or all((N-2)%p for p in range(3,int(N**0.5)+1,2))

primePart(3432)  # True

primePart(37+2)  # True

primePart(13+41) # True

primePart(123)   # False
    

如果您想实际找到一对加起来为 N 的素数,您可以生成最多为 N 的素数并返回第一个素数 >= N/2 其中 N - 素数是已经找到的素数之一:

def findPQ(N):
    if not primePart(N): return
    if N%2: return 2,N-2
    isPrime = [0]+[1]*N
    for p in range(3,N,2):
        if not isPrime[p]: continue
        if 2*p>=N and isPrime[N-p]: return p,N-p
        isPrime[p*p::p] = [0]*len(isPrime[p*p::p])

输出:

findPQ(3432)      # (1723, 1709)

findPQ(12345678)  # (6172879, 6172799)

要超过 10^9,您将需要一个比 Eratosthenes 筛法更快的内存效率更高的算法。这可以通过跳过素数倍数的字典来实现:

def findPQ(N):
    if not primePart(N): return
    if N%2: return 2,N-2
    skip,primes = {},{2}
    for p in range(3,N,2):
        if p in skip:
            prime = skip.pop(p)
            mult  = p + 2*prime
            while mult in skip: mult += 2*prime
            if mult <= N: skip[mult] = prime
        else:
            if 2*p>=N and N-p in primes: return p,N-p
            if p*p<=N: skip[p*p]=p
            if 2*p<=N: primes.add(p)

输出(需要一段时间但不会破坏内存空间):

findPQ(1234567890)  # (617283983, 617283907)    

答案 8 :(得分:0)

def factors(n):
    factlist = []
    for i in range(1,n+1):
        # Since factors of 2 cannot be primes, we ignore them.
        if n%i==0 and i%2!=0:
            factlist.append(i)
    return factlist

def isprime(n):
    return(factors(n)==[1,n])

def preimesupto(n):
    primelist = []
    if n>=2:
        primelist.append(2)
    for i in range(n):
        if isprime(i):
            primelist.append(i)
    return primelist

def primepartition(n):
    if n<0:
        return False
    primelist = preimesupto(n)
    for i in primelist:
        j = n-i
        if j in primelist:
            return True
    else:
        return False

答案 9 :(得分:-2)

def checkprime(number):
fact=1
for r in range(2,number):
if number%r==0:
  fact=fact+1
return(fact<2)

def primepartition(m):

for i in range(2,m):

flag=0
if checkprime(i) and checkprime(m-i)==True:
  flag=1
  break
return(flag==1)

def matched(s):
list_of_string=list(s)
for y in range(len(list_of_string)):
if list_of_string[y]=='(':
for z in range(y,len(list_of_string)):
    if list_of_string[z]==')':
      list_of_string[y]='@'
      list_of_string[z]='@'
      break
 return('('not in list_of_string and ')'not in list_of_string)

 def rotatelist(l,k):
 if k>len(l):
 k=int(k%len(l))
 return(l[k:]+l[0:k])