检查号码是否为素数

时间:2013-04-01 12:07:36

标签: c# primes primality-test

我想问一下这是否是检查数字是否为素数的正确方法?因为我读到0和1不是素数。

int num1;

Console.WriteLine("Accept number:");
num1 = Convert.ToInt32(Console.ReadLine());
if (num1 == 0 || num1 == 1)
{
    Console.WriteLine(num1 + " is not prime number");
    Console.ReadLine();
}
else
{
    for (int a = 2; a <= num1 / 2; a++)
    {
        if (num1 % a == 0)
        {
            Console.WriteLine(num1 + " is not prime number");
            return;
        }

    }
    Console.WriteLine(num1 + " is a prime number");
    Console.ReadLine();
}

26 个答案:

答案 0 :(得分:63)

var number;

Console.WriteLine("Accept number:");
number = Convert.ToInt32(Console.ReadLine());
if(IsPrime(number))
{
  Console.WriteLine("It is prime");
}
else
{
  Console.WriteLine("It is not prime");
}       

public static bool IsPrime(int number)
{
    if (number <= 1) return false;
    if (number == 2) return true;
    if (number % 2 == 0) return false;

    var boundary = (int)Math.Floor(Math.Sqrt(number));

    for (int i = 3; i <= boundary; i+=2)
        if (number % i == 0)
            return false;

    return true;        
}

我将number / 2更改为Math.Sqrt(number),因为在 wikipedia 中,他们说:

  

此例程包括将 n 除以更大的 m 整数   小于1且小于或等于n 的平方根。如果结果   任何这些划分都是整数,那么 n 不是素数,   否则它是一个素数。实际上,如果 n = a * b 是复合的(a和b≠   1)然后其中一个因素 a b 必然最多 n的平方根

答案 1 :(得分:9)

使用Soner的例程,但略有不同:我们将运行直到i等于Math.Ceiling(Math.Sqrt(number)),这是天真解决方案的诀窍:

boolean isPrime(int number)
{

    if (number == 1) return false;
    if (number == 2) return true;

    var limit = Math.Ceiling(Math.Sqrt(number)); //hoisting the loop limit

    for (int i = 2; i <= limit; ++i)  {
       if (number % i == 0)  return false;
    }

    return true;

}

答案 2 :(得分:8)

这是一个很好的方法。

    static bool IsPrime(int n)
    {
        if (n > 1)
        {
            return Enumerable.Range(1, n).Where(x => n%x == 0)
                             .SequenceEqual(new[] {1, n});
        }

        return false;
    }

编写程序的快速方法是:

        for (;;)
        {
            Console.Write("Accept number: ");
            int n = int.Parse(Console.ReadLine());
            if (IsPrime(n))
            {
                Console.WriteLine("{0} is a prime number",n);
            }
            else
            {
                Console.WriteLine("{0} is not a prime number",n);
            }
        }

答案 3 :(得分:5)

我已经实施了一种不同的方法来检查素数,因为:

  • 这些解决方案中的大多数不必要地不断迭代相同的倍数(例如,他们检查5,10,然后是15,单个%乘以5将测试)。
  • A%by 2将处理所有偶数(所有整数以0,2,4,6或8结尾)。
  • A%by 5将处理5的所有倍数(所有以5结尾的整数)。
  • 剩下的是通过以1,3,7或9结尾的整数来测试偶数除法。但美妙的是我们可以一次增加10,而不是上升2,我将演示一个已经过滤的解决方案。
  • 其他算法并没有被删除,所以他们没有像我希望的那样利用你的核心。
  • 我还需要支持非常大的素数,所以我需要使用BigInteger数据类型而不是int,long等。

这是我的实施:

public static BigInteger IntegerSquareRoot(BigInteger value)
{
    if (value > 0)
    {
        int bitLength = value.ToByteArray().Length * 8;
        BigInteger root = BigInteger.One << (bitLength / 2);
        while (!IsSquareRoot(value, root))
        {
            root += value / root;
            root /= 2;
        }
        return root;
    }
    else return 0;
}

private static Boolean IsSquareRoot(BigInteger n, BigInteger root)
{
    BigInteger lowerBound = root * root;
    BigInteger upperBound = (root + 1) * (root + 1);
    return (n >= lowerBound && n < upperBound);
}

static bool IsPrime(BigInteger value)
{
    Console.WriteLine("Checking if {0} is a prime number.", value);
    if (value < 3)
    {
        if (value == 2)
        {
            Console.WriteLine("{0} is a prime number.", value);
            return true;
        }
        else
        {
            Console.WriteLine("{0} is not a prime number because it is below 2.", value);
            return false;
        }
    }
    else
    {
        if (value % 2 == 0)
        {
            Console.WriteLine("{0} is not a prime number because it is divisible by 2.", value);
            return false;
        }
        else if (value == 5)
        {
            Console.WriteLine("{0} is a prime number.", value);
            return true;
        }
        else if (value % 5 == 0)
        {
            Console.WriteLine("{0} is not a prime number because it is divisible by 5.", value);
            return false;
        }
        else
        {
            // The only way this number is a prime number at this point is if it is divisible by numbers ending with 1, 3, 7, and 9.
            AutoResetEvent success = new AutoResetEvent(false);
            AutoResetEvent failure = new AutoResetEvent(false);
            AutoResetEvent onesSucceeded = new AutoResetEvent(false);
            AutoResetEvent threesSucceeded = new AutoResetEvent(false);
            AutoResetEvent sevensSucceeded = new AutoResetEvent(false);
            AutoResetEvent ninesSucceeded = new AutoResetEvent(false);
            BigInteger squareRootedValue = IntegerSquareRoot(value);
            Thread ones = new Thread(() =>
            {
                for (BigInteger i = 11; i <= squareRootedValue; i += 10)
                {
                    if (value % i == 0)
                    {
                        Console.WriteLine("{0} is not a prime number because it is divisible by {1}.", value, i);
                        failure.Set();
                    }
                }
                onesSucceeded.Set();
            });
            ones.Start();
            Thread threes = new Thread(() =>
            {
                for (BigInteger i = 3; i <= squareRootedValue; i += 10)
                {
                    if (value % i == 0)
                    {
                        Console.WriteLine("{0} is not a prime number because it is divisible by {1}.", value, i);
                        failure.Set();
                    }
                }
                threesSucceeded.Set();
            });
            threes.Start();
            Thread sevens = new Thread(() =>
            {
                for (BigInteger i = 7; i <= squareRootedValue; i += 10)
                {
                    if (value % i == 0)
                    {
                        Console.WriteLine("{0} is not a prime number because it is divisible by {1}.", value, i);
                        failure.Set();
                    }
                }
                sevensSucceeded.Set();
            });
            sevens.Start();
            Thread nines = new Thread(() =>
            {
                for (BigInteger i = 9; i <= squareRootedValue; i += 10)
                {
                    if (value % i == 0)
                    {
                        Console.WriteLine("{0} is not a prime number because it is divisible by {1}.", value, i);
                        failure.Set();
                    }
                }
                ninesSucceeded.Set();
            });
            nines.Start();
            Thread successWaiter = new Thread(() =>
            {
                AutoResetEvent.WaitAll(new WaitHandle[] { onesSucceeded, threesSucceeded, sevensSucceeded, ninesSucceeded });
                success.Set();
            });
            successWaiter.Start();
            int result = AutoResetEvent.WaitAny(new WaitHandle[] { success, failure });
            try
            {
                successWaiter.Abort();
            }
            catch { }
            try
            {
                ones.Abort();
            }
            catch { }
            try
            {
                threes.Abort();
            }
            catch { }
            try
            {
                sevens.Abort();
            }
            catch { }
            try
            {
                nines.Abort();
            }
            catch { }
            if (result == 1)
            {
                return false;
            }
            else
            {
                Console.WriteLine("{0} is a prime number.", value);
                return true;
            }
        }
    }
}

更新:如果您想更快地实施试用版的解决方案,您可以考虑使用素数缓存。 如果数字不能被其平方根值的其他素数整除,则该数字只是素数。除此之外,如果您处理足够大的值(如果网站出现故障时从Rosetta Code中获取),您可以考虑使用the probabilistic version of the Miller-Rabin primality test来检查数字的素数:

// Miller-Rabin primality test as an extension method on the BigInteger type.
// Based on the Ruby implementation on this page.
public static class BigIntegerExtensions
{
  public static bool IsProbablePrime(this BigInteger source, int certainty)
  {
    if(source == 2 || source == 3)
      return true;
    if(source < 2 || source % 2 == 0)
      return false;

    BigInteger d = source - 1;
    int s = 0;

    while(d % 2 == 0)
    {
      d /= 2;
      s += 1;
    }

    // There is no built-in method for generating random BigInteger values.
    // Instead, random BigIntegers are constructed from randomly generated
    // byte arrays of the same length as the source.
    RandomNumberGenerator rng = RandomNumberGenerator.Create();
    byte[] bytes = new byte[source.ToByteArray().LongLength];
    BigInteger a;

    for(int i = 0; i < certainty; i++)
    {
      do
      {
        // This may raise an exception in Mono 2.10.8 and earlier.
        // http://bugzilla.xamarin.com/show_bug.cgi?id=2761
        rng.GetBytes(bytes);
        a = new BigInteger(bytes);
      }
      while(a < 2 || a >= source - 2);

      BigInteger x = BigInteger.ModPow(a, d, source);
      if(x == 1 || x == source - 1)
        continue;

      for(int r = 1; r < s; r++)
      {
        x = BigInteger.ModPow(x, 2, source);
        if(x == 1)
          return false;
        if(x == source - 1)
          break;
      }

      if(x != source - 1)
        return false;
    }

    return true;
  }
}

答案 4 :(得分:5)

这是一个good example。我正在放弃这里的代码,以防万一网站出现故障。

using System;

class Program
{
    static void Main()
    {
    //
    // Write prime numbers between 0 and 100.
    //
    Console.WriteLine("--- Primes between 0 and 100 ---");
    for (int i = 0; i < 100; i++)
    {
        bool prime = PrimeTool.IsPrime(i);
        if (prime)
        {
        Console.Write("Prime: ");
        Console.WriteLine(i);
        }
    }
    //
    // Write prime numbers between 10000 and 10100
    //
    Console.WriteLine("--- Primes between 10000 and 10100 ---");
    for (int i = 10000; i < 10100; i++)
    {
        if (PrimeTool.IsPrime(i))
        {
        Console.Write("Prime: ");
        Console.WriteLine(i);
        }
    }
    }
}

以下是包含IsPrime方法的类:

using System;

public static class PrimeTool
{
    public static bool IsPrime(int candidate)
    {
    // Test whether the parameter is a prime number.
    if ((candidate & 1) == 0)
    {
        if (candidate == 2)
        {
        return true;
        }
        else
        {
        return false;
        }
    }
    // Note:
    // ... This version was changed to test the square.
    // ... Original version tested against the square root.
    // ... Also we exclude 1 at the end.
    for (int i = 3; (i * i) <= candidate; i += 2)
    {
        if ((candidate % i) == 0)
        {
        return false;
        }
    }
    return candidate != 1;
    }
}

答案 5 :(得分:1)

在一本书中找到这个例子,并认为这是一个非常优雅的解决方案。

 static void Main(string[] args)
    {
        Console.Write("Enter a number: ");
        int theNum = int.Parse(Console.ReadLine());

        if (theNum < 3)  // special case check, less than 3
        {
            if (theNum == 2)
            {
                // The only positive number that is a prime
                Console.WriteLine("{0} is a prime!", theNum);
            }
            else
            {
                // All others, including 1 and all negative numbers, 
                // are not primes
                Console.WriteLine("{0} is not a prime", theNum);
            }
        }
        else
        {
            if (theNum % 2 == 0)
            {
                // Is the number even?  If yes it cannot be a prime
                Console.WriteLine("{0} is not a prime", theNum);
            }
            else
            {
                // If number is odd, it could be a prime
                int div;

                // This loop starts and 3 and does a modulo operation on all
                // numbers.  As soon as there is no remainder, the loop stops.
                // This can be true under only two circumstances:  The value of
                // div becomes equal to theNum, or theNum is divided evenly by 
                // another value.
                for (div = 3; theNum % div != 0; div += 2)
                    ;  // do nothing

                if (div == theNum)
                {
                    // if theNum and div are equal it must be a prime
                    Console.WriteLine("{0} is a prime!", theNum);
                }
                else
                {
                    // some other number divided evenly into theNum, and it is not
                    // itself, so it is not a prime
                    Console.WriteLine("{0} is not a prime", theNum);
                }
            }
        }

        Console.ReadLine();
    }

答案 6 :(得分:1)

根据@ Micheal的答案,但检查负数并逐步计算广场

    public static bool IsPrime( int candidate ) {
        if ( candidate % 2 <= 0 ) {
            return candidate == 2;
        }
        int power2 = 9;
        for ( int divisor = 3; power2 <= candidate; divisor += 2 ) {
            if ( candidate % divisor == 0 )
                return false;
            power2 += divisor * 4 + 4;
        }
        return true;
    }

答案 7 :(得分:1)

您还可以找到用户直到给定数字的素数范围。

CODE:

class Program
    {
        static void Main(string[] args)
        {
            Console.WriteLine("Input a number to find Prime numbers\n");
            int inp = Convert.ToInt32(Console.ReadLine());
            Console.WriteLine("\n Prime Numbers are:\n------------------------------");
            int count = 0;

            for (int i = 1; i <= inp; i++)
            {
                for (int j = 2; j < i; j++) // j=2 because if we divide any number with 1 the remaider will always 0, so skip this step to minimize time duration.
                {
                    if (i % j != 0)
                    {
                        count += 1;
                    }
                }
                if (count == (i - 2))
                    {
                        Console.Write(i + "\t"); 
                    }

                count = 0;
            }

            Console.ReadKey();

        }
    }

Prime numbers

答案 8 :(得分:1)

/***
 * Check a number is prime or not
 * @param n the number
 * @return {@code true} if {@code n} is prime
 */
public static boolean isPrime(int n) {
    if (n == 2) {
        return true;
    }
    if (n < 2 || n % 2 == 0) {
        return false;
    }
    for (int i = 3; i <= Math.sqrt(n); i += 2) {
        if (n % i == 0) {
            return false;
        }
    }
    return true;
}

答案 9 :(得分:1)

此版本计算素数平方根列表,仅检查平方根下面的素数列表,并使用列表中的二进制搜索来查找已知素数。我循环检查前1,000,000个素数,花了大约7秒钟。

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace ConsoleApplication5
{
    class Program
    {
        static void Main(string[] args)
        {
            //test();
            testMax();
            Console.ReadLine();
        }

        static void testMax()
        {
            List<int> CheckPrimes = Enumerable.Range(2, 1000000).ToList();
            PrimeChecker pc = new PrimeChecker(1000000);
            foreach (int i in CheckPrimes)
            {
                if (pc.isPrime(i))
                {
                    Console.WriteLine(i);
                }
            }
        }
    }

    public class PrimeChecker{
        public List<int> KnownRootPrimesList;
        public int HighestKnownPrime = 3;

        public PrimeChecker(int Max=1000000){
            KnownRootPrimesList = new List<int>();
            KnownRootPrimesList.Add(2);
            KnownRootPrimesList.Add(3);
            isPrime(Max);
        }

        public bool isPrime(int value)
        {
            int srt = Convert.ToInt32(Math.Ceiling(Math.Sqrt(Convert.ToDouble(value))));
            if(srt > HighestKnownPrime)
            {
                for(int i = HighestKnownPrime + 1; i <= srt; i++)
                {
                    if (i > HighestKnownPrime)
                    {
                        if(isPrimeCalculation(i))
                        {
                                KnownRootPrimesList.Add(i);
                                HighestKnownPrime = i;
                        }
                    }
                }
            }
            bool isValuePrime = isPrimeCalculation(value);
            return(isValuePrime);
        }

        private bool isPrimeCalculation(int value)
        {
            if (value < HighestKnownPrime)
            {
                if (KnownRootPrimesList.BinarySearch(value) > -1)
                {
                    return (true);
                }
                else
                {
                    return (false);
                }
            }
            int srt = Convert.ToInt32(Math.Ceiling(Math.Sqrt(Convert.ToDouble(value))));
            bool isPrime = true;
            List<int> CheckList = KnownRootPrimesList.ToList();
            if (HighestKnownPrime + 1 < srt)
            {
                CheckList.AddRange(Enumerable.Range(HighestKnownPrime + 1, srt));
            }
            foreach(int i in CheckList)
            {
                isPrime = ((value % i) != 0);
                if(!isPrime)
                {
                    break;
                }
            }
            return (isPrime);
        }

        public bool isPrimeStandard(int value)
        {
            int srt = Convert.ToInt32(Math.Ceiling(Math.Sqrt(Convert.ToDouble(value))));
            bool isPrime = true;
            List<int> CheckList = Enumerable.Range(2, srt).ToList();
            foreach (int i in CheckList)
            {
                isPrime = ((value % i) != 0);
                if (!isPrime)
                {
                    break;
                }
            }
            return (isPrime);
        }
    }
}

答案 10 :(得分:1)

这基本上是Eric Lippert在上面提出的一个精彩建议的实现。

    public static bool isPrime(int number)
    {
        if (number == 1) return false;
        if (number == 2 || number == 3 || number == 5) return true;
        if (number % 2 == 0 || number % 3 == 0 || number % 5 == 0) return false;

        var boundary = (int)Math.Floor(Math.Sqrt(number));

        // You can do less work by observing that at this point, all primes 
        // other than 2 and 3 leave a remainder of either 1 or 5 when divided by 6. 
        // The other possible remainders have been taken care of.
        int i = 6; // start from 6, since others below have been handled.
        while (i <= boundary)
        {
            if (number % (i + 1) == 0 || number % (i + 5) == 0)
                return false;

            i += 6;
        }

        return true;
    }

答案 11 :(得分:0)

  • 质数除 2 外都是奇数
  • 1 或 0 既不是质数也不是合数

方法

  1. 添加一个计数器来检查输入数字可以被 i 整除的次数(并且余数为 0(零))
  2. 如果 counter = 2,则输入是素数,否则不是素数
  3. 如果 counter is > 2 "break" 以避免不必要的过程(如果你想计算输入数字的因子,请在第一个 if 语句中删除“ || counter > 2 ”)
  4. 如果您想查看有多少余数为 0(或存在因子),请在 for 循环内的第二个 if 语句中添加这行代码:
Console.WriteLine( $" {inputNumber} / {i} = { inputNumber / i} (remainder: {inputNumber % i})" ); 
  1. 添加第 4 行代码(在 for 循环末尾)以查看所有数字除以输入数字的结果(以防您想查看余数输出和商)
Console.Write( "Enter a Positive Number: " );
int inputNumber = Convert.ToInt32( Console.ReadLine() );
int counter = 0;

    for ( int i = 1; i <= inputNumber; i++ ) {
        if ( inputNumber == 0 || inputNumber == 1 || counter > 2 ) { break; }
        if ( inputNumber % i == 0 ) { counter++; }
    }

    if ( counter == 2 ) {
        Console.WriteLine( $"{inputNumber} is a prime number." );
    } else if ( inputNumber == 1 || inputNumber == 0 ) {
        Console.WriteLine( $"{inputNumber} is neither prime nor composite." );
    } else {
        Console.WriteLine( $"{inputNumber} is not a prime number. (It is a composite number)" );
    }

我的参考:https://www.tutorialspoint.com/Chash-Program-to-check-if-a-number-is-prime-or-not

答案 12 :(得分:0)

function isPrime(n) {

    //the most speedly function

    var res = '';
    var is_composite = false;
    var err = false;
    var sqrt = Math.sqrt(n);

    if (n <= 1){
        err = true;
    }

    if (n == 2 || n == 3){

        res = true; //"Prime"

    } else if(n % 2 == 0 || n % 3 == 0) {

        res = false; //'Composite'

    } else{

        /*here you just neet to check dividers like (6k+1) or (6k-1)
          other dividers we exclude in if(n % 2 == 0 || n % 3 == 0)*/

        for(let i = 5; i <= sqrt; i += 6){
            if (n % i == 0){
                is_composite = true;
                break;
            }
        }

        if (!is_composite){
            for(let i=7; i <= sqrt; i += 6){
                if (n % i == 0){
                    is_composite = true;
                    break;
                }
            }
        }

        if (is_composite){
            res = false; //'Composite'
        } else {
            res = true; //'Prime'
        }
    }

    if (err) {
        res = 'error';
    }

    return res;
}

答案 13 :(得分:0)

我认为这是最简单的方法。

static bool IsPrime(int number)
{
   for (int i = 2; i <= number/2; i++)
       if (number % i == 0)
           return false;
    return true;
}

答案 14 :(得分:0)

这是一个没有其他答案“杂乱无章”的版本,只是可以解决问题。

static void Main(string[] args)
{

    Console.WriteLine("Enter your number: ");
    int num = Convert.ToInt32(Console.ReadLine());
    bool isPrime = true;
    for (int i = 2; i < num/2; i++)
    {
        if (num % i == 0)
        {
            isPrime = false;
            break;
        }
    }
    if (isPrime)
        Console.WriteLine("It is Prime");
    else
        Console.WriteLine("It is not Prime");
    Console.ReadLine();
}

答案 15 :(得分:0)

这是查找素数的最简单方法是

for(i=2; i<num; i++)
        {
            if(num%i == 0)
            {
                count++;
                break;
            }
        }
        if(count == 0)
        {
            Console.WriteLine("This is a Prime Number");
        }
        else
        {
            Console.WriteLine("This is not a Prime Number");
        }

有用的链接: https://codescracker.com/java/program/java-program-check-prime.htm

答案 16 :(得分:0)

我正在尝试使用Any()...

从提前退出中获得一些效率
    public static bool IsPrime(long n)
    {
        if (n == 1) return false;
        if (n == 3) return true;

        //Even numbers are not primes
        if (n % 2 == 0) return false;

        return !Enumerable.Range(2, Convert.ToInt32(Math.Ceiling(Math.Sqrt(n))))
            .Any(x => n % x == 0);
    }

答案 17 :(得分:0)

  

素数是大于1但不能的数字   除了1和它本身之外,均匀地除以任何其他数字。

     

@这个程序会告诉你给定的数字是否为素数,并且会显示非素数,它可以被(一个数字)整除而不是1或它本身?@

        Console.Write("Please Enter a number: ");
        int number = int.Parse(Console.ReadLine());
        int count = 2; 
        // this is initial count number which is greater than 1

        bool prime = true;
        // used Boolean value to apply condition correctly

        int sqrtOfNumber = (int)Math.Sqrt(number); 
        // square root of input number this would help to simplify the looping.  

        while (prime && count <= sqrtOfNumber)
        {
            if ( number % count == 0)
            {
            Console.WriteLine($"{number} isn't prime and it divisible by 
                                      number {count}");  // this will generate a number isn't prime and it is divisible by a number which is rather than 1 or itself and this line will proves why it's not a prime number.
                prime = false;
            }

            count++;

        }
        if (prime && number > 1)

        {
            Console.WriteLine($"{number} is a prime number");
        }
        else if (prime == true)
        // if input is 1 or less than 1 then this code will generate
        {
            Console.WriteLine($"{number} isn't a prime");
        }

答案 18 :(得分:0)

函数中的算法包括测试n是否是2和sqrt(n)之间的任何整数的倍数。如果不是,则返回True,这意味着数字(n)是素数,否则返回False,这意味着n除以2之间的数字和sqrt(n)的楼层整数部分。 / p>

递归版

        // Always call it as isPrime(n,2)
        private static bool isPrime(int n, int k)
        {
            if (k * k <= n)
            {
                if ((n % k) == 0)
                    return false;
                else return isPrime(n, k + 1);
            }
            else
                return true;
        }

答案 19 :(得分:0)

函数中的算法包括测试n是否是2和sqrt(n)之间的任何整数的倍数。如果不是,则返回True,这意味着数字(n)是素数,否则返回False,这意味着n除以2之间的数字和sqrt(n)的楼层整数部分。 / p>

private static bool isPrime(int n)
        {
            int k = 2;
            while (k * k <= n)
            {
                if ((n % k) == 0)
                    return false;
                else k++;
            }
            return true;
        }

答案 20 :(得分:0)

我认为这对初学者来说是一种简单的方式:

using System;
using System.Numerics;
public class PrimeChecker
{
    public static void Main()
    {
    // Input
        Console.WriteLine("Enter number to check is it prime: ");
        BigInteger n = BigInteger.Parse(Console.ReadLine());
        bool prime = false;

    // Logic
        if ( n==0 || n==1)
        {
            Console.WriteLine(prime);
        }
        else if ( n==2 )
        {
            prime = true;
            Console.WriteLine(prime);
        }
        else if (n>2)
        {
            IsPrime(n, prime);
        }
    }

    // Method
    public static void IsPrime(BigInteger n, bool prime)
    {
        bool local = false;
        for (int i=2; i<=(BigInteger)Math.Sqrt((double)n); i++)
        {
            if (n % i == 0)
            {
                local = true;
                break;
            }
        }
        if (local)
            {
                Console.WriteLine(prime);
            }
        else
        {
            prime = true;
            Console.WriteLine(prime);
        }
    }
}

答案 21 :(得分:-1)

你也可以试试这个:

bool isPrime(int number)
    {
        return (Enumerable.Range(1, number).Count(x => number % x == 0) == 2);
    }

答案 22 :(得分:-1)

试试这段代码。

bool isPrimeNubmer(int n)
{
    if (n == 2 || n == 3) //2, 3 are prime numbers
        return true;
    else if (n % 2 == 0) //even numbers are not prime numbers
        return false;
    else
    {
        int j = 3;
        int k = (n + 1) / 2 ;

        while (j <= k)
        {
            if (n % j == 0)
                return false;
            j = j + 2;
        }
        return true;
    }
}

答案 23 :(得分:-1)

只有一行代码:

    private static bool primeNumberTest(int i)
    {
        return i > 3 ? ( (Enumerable.Range(2, (i / 2) + 1).Where(x => (i % x == 0))).Count() > 0 ? false : true ) : i == 2 || i == 3 ? true : false;
    }

答案 24 :(得分:-1)

   bool flag = false;


            for (int n = 1;n < 101;n++)
            {
                if (n == 1 || n == 2)
                {
                    Console.WriteLine("prime");
                }

                else
                {
                    for (int i = 2; i < n; i++)
                    {
                        if (n % i == 0)
                        {
                            flag = true;
                            break;
                        }
                    }
                }

                if (flag)
                {
                    Console.WriteLine(n+" not prime");
                }
                else
                {
                    Console.WriteLine(n + " prime");
                }
                 flag = false;
            }

            Console.ReadLine();

答案 25 :(得分:-2)

使用常规方法查找素数的最短技术

    public string IsPrimeNumber(int Number)
    {
        int i = 2, j = Number / 2;
        for (; i <= j && Number % 2 != 0; i++);
        return (i - 1) == j ? "Prime Number" : "Not Prime Number";
    }