我有一个包含以下信息的表,我正在使用Google BigQuery。我正在尝试根据person_ID根据一些不同类型的计算,中间和初始,结束和初始以及结束和初始之间的天数进行汇总。
|Person_ID|Action |Date |
|100 |Initial|22/12/2018 |
|100 |Middle |23/12/2018 |
|100 |End |29/12/2018 |
|100 |Close |31/12/2018 |
|150 |Initial|02/01/2019 |
|150 |Middle |04/01/2019 |
|150 |End |07/01/2019 |
|150 |Close |10/01/2019 |
我试图得出如下结果
|Person_ID|Middle_Minus_initial|End_Minus_initial|Close_Minus_initial|
|100 | 1 | 7 | 9 |
|150 | 2 | 5 | 8 |
我真的不太确定该怎么做,因为我是SQL的初学者,因此可以提供任何帮助。谢谢。
答案 0 :(得分:1)
以下是用于BigQuery标准SQL
#standardSQL
SELECT Person_ID,
DATE_DIFF(Middle, Initial, DAY) AS Middle_Minus_initial,
DATE_DIFF(`End`, Initial, DAY) AS End_Minus_initial,
DATE_DIFF(Close, Initial, DAY) AS Close_Minus_initial
FROM (
SELECT Person_ID,
PARSE_DATE('%d/%m/%Y', MAX(IF(Action = 'Initial', `Date`, NULL))) AS Initial,
PARSE_DATE('%d/%m/%Y', MAX(IF(Action = 'Middle', `Date`, NULL))) AS Middle,
PARSE_DATE('%d/%m/%Y', MAX(IF(Action = 'End', `Date`, NULL))) AS `End`,
PARSE_DATE('%d/%m/%Y', MAX(IF(Action = 'Close', `Date`, NULL))) AS Close
FROM `project.dataset.table`
GROUP BY Person_ID
)
您可以使用问题中的示例数据来测试,玩游戏,如下例所示
#standardSQL
WITH `project.dataset.table` AS (
SELECT 100 Person_ID, 'Initial' Action, '22/12/2018' `Date` UNION ALL
SELECT 100, 'Middle', '23/12/2018' UNION ALL
SELECT 100, 'End', '29/12/2018' UNION ALL
SELECT 100, 'Close', '31/12/2018' UNION ALL
SELECT 150, 'Initial', '02/01/2019' UNION ALL
SELECT 150, 'Middle', '04/01/2019' UNION ALL
SELECT 150, 'End', '07/01/2019' UNION ALL
SELECT 150, 'Close', '10/01/2019'
)
SELECT Person_ID,
DATE_DIFF(Middle, Initial, DAY) AS Middle_Minus_initial,
DATE_DIFF(`End`, Initial, DAY) AS End_Minus_initial,
DATE_DIFF(Close, Initial, DAY) AS Close_Minus_initial
FROM (
SELECT Person_ID,
PARSE_DATE('%d/%m/%Y', MAX(IF(Action = 'Initial', `Date`, NULL))) AS Initial,
PARSE_DATE('%d/%m/%Y', MAX(IF(Action = 'Middle', `Date`, NULL))) AS Middle,
PARSE_DATE('%d/%m/%Y', MAX(IF(Action = 'End', `Date`, NULL))) AS `End`,
PARSE_DATE('%d/%m/%Y', MAX(IF(Action = 'Close', `Date`, NULL))) AS Close
FROM `project.dataset.table`
GROUP BY Person_ID
)
-- ORDER BY Person_ID
有结果
Row Person_ID Middle_Minus_initial End_Minus_initial Close_Minus_initial
1 100 1 7 9
2 150 2 5 8
答案 1 :(得分:0)
一种方法是条件聚合:
select person_id,
date_diff(max(case when action = 'Middle' then date end),
max(case when action = 'Initial' then date end),
day) as middle_minus_initial,
date_diff(max(case when action = 'End' then date end),
max(case when action = 'Initial' then date end),
day) as end_minus_initial,
date_diff(max(case when action = 'Close' then date end),
max(case when action = 'Initial' then date end),
day) as close_minus_initial
from t
group by person_id;
答案 2 :(得分:0)
另一个避免使用聚合的选项是加入多个子查询,例如:
SELECT
t.personid,
DATEDIFF(tm.date, ti.date, day) Middle_Minus_initial,
DATEDIFF(te.date, ti.date, day) End_Minus_initial,
DATEDIFF(tc.date, ti.date, day) Close_Minus_initial
FROM
(SELECT DISTINCT personid FROM mytable) t
LEFT JOIN mytable ti ON ti.personid = t.personid AND ti.action = 'Initial'
LEFT JOIN mytable tm ON tm.personid = t.personid AND tm.action = 'Middle'
LEFT JOIN mytable te ON te.personid = t.personid AND te.action = 'End'
LEFT JOIN mytable tc ON tc.personid = t.personid AND tc.action = 'Close'