从kafka进行Spark结构化流传输,以分布式方式将数据保存在Cassandra中

时间:2019-02-04 12:21:03

标签: scala apache-kafka spark-streaming spark-structured-streaming spark-cassandra-connector

我正在尝试创建从Kafka到Spark的结构化流,这是一个json字符串。现在想将json解析为特定的列,然后以最佳速度将数据帧保存到cassandra表中。使用Spark 2.4和cassandra 2.11(Apache)而非Not DSE。

我尝试创建一个直接流,该流提供了案例类的DStream,我使用DStream上的foreachRDD将其保存到Cassandra中,但是每隔6-7天就会挂起。因此,尝试流式传输直接提供数据帧并可以将其保存到Cassandra。

val conf = new SparkConf()
          .setMaster("local[3]")
      .setAppName("Fleet Live Data")
      .set("spark.cassandra.connection.host", "ip")
      .set("spark.cassandra.connection.keep_alive_ms", "20000")
      .set("spark.cassandra.auth.username", "user")
      .set("spark.cassandra.auth.password", "pass")
      .set("spark.streaming.stopGracefullyOnShutdown", "true")
      .set("spark.executor.memory", "2g")
      .set("spark.driver.memory", "2g")
      .set("spark.submit.deployMode", "cluster")
      .set("spark.executor.instances", "4")
      .set("spark.executor.cores", "2")
      .set("spark.cores.max", "9")
      .set("spark.driver.cores", "9")
      .set("spark.speculation", "true")
      .set("spark.locality.wait", "2s")

val spark = SparkSession
  .builder
  .appName("Fleet Live Data")
  .config(conf)
  .getOrCreate()
println("Spark Session Config Done")

val sc = SparkContext.getOrCreate(conf)
sc.setLogLevel("ERROR")
val ssc = new StreamingContext(sc, Seconds(10))
val sqlContext = new SQLContext(sc)
 val topics = Map("livefleet" -> 1)
import spark.implicits._
implicit val formats = DefaultFormats

 val df = spark
  .readStream
  .format("kafka")
  .option("kafka.bootstrap.servers", "brokerIP:port")
  .option("subscribe", "livefleet")
  .load()

val collection = df.selectExpr("CAST(value AS STRING)").map(f => parse(f.toString()).extract[liveevent])

val query = collection.writeStream
  .option("checkpointLocation", "/tmp/check_point/")
  .format("kafka")
  .format("org.apache.spark.sql.cassandra")
  .option("keyspace", "trackfleet_db")
  .option("table", "locationinfotemp1")
  .outputMode(OutputMode.Update)
  .start()
  query.awaitTermination()

预期是将数据帧保存到cassandra。但是出现此错误:-

  

线程“ main”中的异常org.apache.spark.sql.AnalysisException:具有流源的查询必须使用writeStream.start()

执行

2 个答案:

答案 0 :(得分:1)

根据错误消息,我会说Cassandra不是Streaming Sink,我相信您需要使用.write

collection.write
    .format("org.apache.spark.sql.cassandra")
    .options(...)
    .save() 

import org.apache.spark.sql.cassandra._

// ...
collection.cassandraFormat(table, keyspace).save()

文档:https://github.com/datastax/spark-cassandra-connector/blob/master/doc/14_data_frames.md#example-using-helper-commands-to-write-datasets


但这可能仅适用于数据帧,流源,请参见this example,它使用.saveToCassandra

import com.datastax.spark.connector.streaming._

// ...
val wc = stream.flatMap(_.split("\\s+"))
    .map(x => (x, 1))
    .reduceByKey(_ + _)
    .saveToCassandra("streaming_test", "words", SomeColumns("word", "count")) 

ssc.start()

如果那行不通,那么您确实需要一个ForEachWriter

collection.writeStream
  .foreach(new ForeachWriter[Row] {

  override def process(row: Row): Unit = {
    println(s"Processing ${row}")
  }

  override def close(errorOrNull: Throwable): Unit = {}

  override def open(partitionId: Long, version: Long): Boolean = {
    true
  }
})
.start()

还值得一提的是,Datastax发布了Kafka连接器,并且Kafka Connect随您的Kafka安装(假定为0.10.2)或更高版本一起提供。您可以找到其announcement here

答案 1 :(得分:0)

如果您使用的是Spark 2.4.0,请尝试使用foreachbatch编写器。它在流查询中使用基于批处理的编写器。

    val query= test.writeStream
       .foreachBatch((batchDF, batchId) =>
        batchDF.write
               .format("org.apache.spark.sql.cassandra")
               .mode(saveMode)
               .options(Map("keyspace" -> keySpace, "table" -> tableName))
               .save())
      .trigger(Trigger.ProcessingTime(3000))
      .option("checkpointLocation", /checkpointing")
      .start
   query.awaitTermination()