我的熊猫数据框的其中一列如下所示
>> df
Item
0 [{"id":A,"value":20},{"id":B,"value":30}]
1 [{"id":A,"value":20},{"id":C,"value":50}]
2 [{"id":A,"value":20},{"id":B,"value":30},{"id":C,"value":40}]
我想将其扩展为
A B C
0 20 30 NaN
1 20 NaN 50
2 20 30 40
我尝试了
dfx = pd.DataFrame()
for i in range(df.shape[0]):
df1 = pd.DataFrame(df.item[i]).T
header = df1.iloc[0]
df1 = df1[1:]
df1 = df1.rename(columns = header)
dfx = dfx.append(df1)
但这会花费很多时间,因为我的数据非常庞大。最好的方法是什么?
我的原始json数据如下:
{
{
'_id': '5b1284e0b840a768f5545ef6',
'device': '0035sdf121',
'customerId': '38',
'variantId': '31',
'timeStamp': datetime.datetime(2018, 6, 2, 11, 50, 11),
'item': [{'id': A, 'value': 20},
{'id': B, 'value': 30},
{'id': C, 'value': 50}
},
{
'_id': '5b1284e0b840a768f5545ef6',
'device': '0035sdf121',
'customerId': '38',
'variantId': '31',
'timeStamp': datetime.datetime(2018, 6, 2, 11, 50, 11),
'item': [{'id': A, 'value': 20},
{'id': B, 'value': 30},
{'id': C, 'value': 50}
},
.............
}
答案 0 :(得分:0)
我同意@JeffH,您应该真正了解如何构造DataFrame
。
假设您是从无法控制的地方获得的,则可以使用以下方法转换为所需的DataFrame
:
In []:
pd.DataFrame(df['Item'].apply(lambda r: {d['id']: d['value'] for d in r}).values.tolist())
Out[]:
A B C
0 20 30.0 NaN
1 20 NaN 50.0
2 20 30.0 40.0