使用混合的浓度作为线性优化的约束

时间:2019-01-31 16:36:51

标签: python optimization linear-programming or-tools

我有一张下表,从中必须创建一个具有特定蛋白质和碳水化合物价值的配方。

enter image description here

并使用or-tools解决此问题,到目前为止,我有:

格式化的数据

data = [
['f1', 10, 15, 17, 10],
['f2', 2, 11, 12, 14],
['f3', 6.5, 17, 16, 13],
['f4', 8, 12, 8, 16]
]

营养素的约束:

营养素= [     [“蛋白质”,15.5],     [“碳水化合物”,12.3]]

目标函数,其中上限“数据i”是该特定元素的库存。

food = [[]] * len(data)

# Objective: minimize the sum of (price-normalized) foods.
objective = solver.Objective()
for i in range(0, len(data)):
    food[i] = solver.NumVar(0.0, data[i][1], data[i][0])
    objective.SetCoefficient(food[i], 4)
objective.SetMinimization()

我还约束了每种营养素的要求值:

constraints = [0] * (len(nutrients))
for i in range(0, len(nutrients)):
    constraints[i] = solver.Constraint(nutrients[i][1], solver.infinity())
    for j in range(0, len(data)):
        constraints[i].SetCoefficient(food[j], data[j][i+3])

最后是求解器:

状态= Solver.Solve()

if status == solver.OPTIMAL:
    # Display the amounts (in dollars) to purchase of each food.
    price = 0
    num_nutrients = len(data[i]) - 3
    nutrients = [0] * (len(data[i]) - 3)
    for i in range(0, len(data)):
        price += food[i].solution_value()

        for nutrient in range(0, num_nutrients):
            nutrients[nutrient] += data[i][nutrient+3] * food[i].solution_value()

        if food[i].solution_value() > 0:
            print ("%s = %f" % (data[i][0], food[i].solution_value()))

    print ('Optimal  price: $%.2f' % (price))
else:  # No optimal solution was found.
    if status == solver.FEASIBLE:
        print ('A potentially suboptimal solution was found.')
    else:
        print ('The solver could not solve the problem.')

到这部分工作正常,我得到的结果如下:

f1 = 0.077049
f3 = 0.886885
Optimal  price: $0.96

知道我还需要添加将要制造的公斤数的约束,这些约束也必须满足之前的约束。

我的第一个猜测是要增加营养素需求量

factor = 10
nutrients = [
    ["protein",15.5*factor],
    ["carbohydrates",12.3*factor]]

我会多吃10倍的食物,但后来我意识到这是不对的,因为我需要的是浓缩食品。

我需要10公斤蛋白质和15.5蛋白质/公斤的碳水化合物 我需要的约束是这样的:

(f1*W + f2*X + f3*Y + f4*Z)/(W+X+Y+Z) = 10kg with  15.5 protein/kg and 12.3 carbohydrates/kg 

Where W, X, Y and Z are the kg of each food

如何将此约束添加到求解器?

1 个答案:

答案 0 :(得分:2)

(f1*W + f2*X + f3*Y + f4*Z)/(W+X+Y+Z) = 10

相同
f1*W + f2*X + f3*Y + f4*Z = 10*(W+X+Y+Z)

现在是线性的。

并且,如果我们错过了一些数学课,我们可以将其写为标准的LP约束:

(f1-10)*W + (f2-10)*X + (f3-10)*Y + (f4-10)*Z = 0