我正在学习SciKit-Learn,因此我想确定最适合我的数据的模型。如下面的代码所示,我尝试训练和测试多个模型,并尝试打印出精度。这些模型中只有某些模型可以工作,其他模型则因ValueError失败:分类指标无法处理二进制目标和连续目标的混合情况。
此错误是什么意思? 如何修改下面的代码以成功评估失败的模型?
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn import linear_model
from sklearn import svm
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn import preprocessing
from sklearn import utils
# Shuffle pandas rows randomly
from sklearn.utils import shuffle
# Disable annoying warnings
import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)
warnings.simplefilter(action='ignore', category=UserWarning)
# Performance
import time
# Import the data and assign the column names
colNames = []
for colName in range(0,3780):
colNames.append("%s"%(colName))
colNames.append('class')
df = pd.read_csv("HoGTestData.csv", names=colNames)
# Randomly shuffle rows
df = shuffle(df)
df = df.head(20)
# Print some info on the dataset
print("Head of Data:")
print(df.head())
print("Shape of Data:")
print(df.shape)
# descriptions
print("Describe Data:")
#print(df.describe())
# class distribution
print(df.groupby('class').size())
# Split-out validation dataset
datasetData = df.values
# Determine shape and portion of data that is real data as opposed to labels
shape = datasetData.shape
thresh = int(shape[1]) - 1
# Extract labels and feature vectors
featureVectors = datasetData[:,0:thresh]
labels = datasetData[:,thresh:]
# Perform a standard scaler on the data
scaler = preprocessing.StandardScaler()
featureVectors = scaler.fit_transform(featureVectors)
# Encode labels to be acceptable
labelEncoder = preprocessing.LabelEncoder()
labels = labelEncoder.fit_transform(labels)
# Split data into training and testing data
test_size = 0.20
seed = 7
featureVectorTrain, featureVectorTest, labelsTrain, labelsTest = model_selection.train_test_split(featureVectors, labels, test_size=test_size, random_state=seed)
# Spot Check Algorithms
models = []
models.append(('SVM', svm.SVC()))
models.append(('LR', LogisticRegression()))
models.append(('LDA', LinearDiscriminantAnalysis()))
models.append(('KNN', KNeighborsClassifier()))
models.append(('CART', DecisionTreeClassifier()))
models.append(('NB', GaussianNB()))
#models.append(('SGDRegressor', linear_model.SGDRegressor())) #ValueError: Classification metrics can't handle a mix of binary and continuous targets
#models.append(('BayesianRidge', linear_model.BayesianRidge())) #ValueError: Classification metrics can't handle a mix of binary and continuous targets
#models.append(('LassoLars', linear_model.LassoLars())) #ValueError: Classification metrics can't handle a mix of binary and continuous targets
#models.append(('ARDRegression', linear_model.ARDRegression())) #ValueError: Classification metrics can't handle a mix of binary and continuous targets
#models.append(('PassiveAggressiveRegressor', linear_model.PassiveAggressiveRegressor())) #ValueError: Classification metrics can't handle a mix of binary and continuous targets
#models.append(('TheilSenRegressor', linear_model.TheilSenRegressor())) #ValueError: Classification metrics can't handle a mix of binary and continuous targets
#models.append(('LinearRegression', linear_model.LinearRegression())) #ValueError: Classification metrics can't handle a mix of binary and continuous targets
# Test options and evaluation metric
seed = 42
scoring = 'accuracy'
# evaluate each model in turn
results = []
names = []
print("---------------------------------------")
for name, model in models:
start_time = time.time()
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(model, featureVectorTrain, labelsTrain, cv=kfold, scoring=scoring)
elapsed_time = time.time() - start_time
results.append(cv_results)
names.append(name)
msg = "{:3.2f} ({:3.2f}) Time elapsed: {:6.2f}".format(cv_results.mean(), cv_results.std(), elapsed_time)
msg = "%s "%(name) + msg
print(msg)
print("---------------------------------------")
print("Done")
这是脚本输出:
Head of Data:
0 1 2 ... 3778 3779 class
20573 0.124282 0.090376 0.088723 ... 0.148411 0.120542 -1
20461 0.154031 0.110177 0.087799 ... 0.100416 0.119484 -1
10416 0.340767 0.150863 0.025489 ... 0.047592 0.036171 1
52404 0.000000 0.000000 0.000000 ... 0.000000 0.000000 -1
42785 0.159105 0.118963 0.090405 ... 0.009996 0.027460 -1
[5 rows x 3781 columns]
Shape of Data:
(1024, 3781)
Describe Data:
class
-1 794
1 230
dtype: int64
---------------------------------------
SVM 0.9878 (0.0123) Time elapsed: 10.20
LR 0.9414 (0.0187) Time elapsed: 7.09
LDA 0.9768 (0.0128) Time elapsed: 6.60
KNN 0.8511 (0.0384) Time elapsed: 3.06
CART 0.9047 (0.0358) Time elapsed: 8.84
NB 0.9292 (0.0209) Time elapsed: 0.36
---------------------------------------
Done
这是labelsTrain变量:
print(labelsTrain)
[0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0
1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
1 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 1
0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 1
0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
0 0 1 0 0]
在cross_val_score函数期间发生错误:
# evaluate each model in turn
results = []
names = []
print("---------------------------------------")
for name, model in models:
start_time = time.time()
kfold = model_selection.KFold(n_splits=10, random_state=seed)
print("start cross_val_score")
cv_results = model_selection.cross_val_score(model, featureVectorTrain, labelsTrain, cv=kfold, scoring=scoring)
print("done cross_val_score")
elapsed_time = time.time() - start_time
results.append(cv_results)
#print(results)
names.append(name)
msg = "{:3.4f} ({:3.4f}) Time elapsed: {:6.2f}".format(cv_results.mean(), cv_results.std(), elapsed_time)
msg = "%s "%(name) + msg
print(msg)
print("---------------------------------------")
...
---------------------------------------
start cross_val_score
done cross_val_score
SVM 0.9744 (0.0127) Time elapsed: 10.46
start cross_val_score
done cross_val_score
LR 0.9194 (0.0390) Time elapsed: 9.56
start cross_val_score
done cross_val_score
LDA 0.9780 (0.0106) Time elapsed: 8.04
start cross_val_score
done cross_val_score
KNN 0.8657 (0.0319) Time elapsed: 3.20
start cross_val_score
done cross_val_score
CART 0.9072 (0.0326) Time elapsed: 10.20
start cross_val_score
done cross_val_score
NB 0.9182 (0.0327) Time elapsed: 0.38
start cross_val_score
Traceback (most recent call last):
File "/Users/me/Desktop/MachineLearning/Initial.py", line 112, in <module>
cv_results = model_selection.cross_val_score(model, featureVectorTrain, labelsTrain, cv=kfold, scoring=scoring)
File "/usr/local/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 402, in cross_val_score
error_score=error_score)
File "/usr/local/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 240, in cross_validate
for train, test in cv.split(X, y, groups))
File "/usr/local/lib/python3.7/site-packages/sklearn/externals/joblib/parallel.py", line 917, in __call__
if self.dispatch_one_batch(iterator):
File "/usr/local/lib/python3.7/site-packages/sklearn/externals/joblib/parallel.py", line 759, in dispatch_one_batch
self._dispatch(tasks)
File "/usr/local/lib/python3.7/site-packages/sklearn/externals/joblib/parallel.py", line 716, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/usr/local/lib/python3.7/site-packages/sklearn/externals/joblib/_parallel_backends.py", line 182, in apply_async
result = ImmediateResult(func)
File "/usr/local/lib/python3.7/site-packages/sklearn/externals/joblib/_parallel_backends.py", line 549, in __init__
self.results = batch()
File "/usr/local/lib/python3.7/site-packages/sklearn/externals/joblib/parallel.py", line 225, in __call__
for func, args, kwargs in self.items]
File "/usr/local/lib/python3.7/site-packages/sklearn/externals/joblib/parallel.py", line 225, in <listcomp>
for func, args, kwargs in self.items]
File "/usr/local/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 568, in _fit_and_score
test_scores = _score(estimator, X_test, y_test, scorer, is_multimetric)
File "/usr/local/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 605, in _score
return _multimetric_score(estimator, X_test, y_test, scorer)
File "/usr/local/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 635, in _multimetric_score
score = scorer(estimator, X_test, y_test)
File "/usr/local/lib/python3.7/site-packages/sklearn/metrics/scorer.py", line 98, in __call__
**self._kwargs)
File "/usr/local/lib/python3.7/site-packages/sklearn/metrics/classification.py", line 176, in accuracy_score
y_type, y_true, y_pred = _check_targets(y_true, y_pred)
File "/usr/local/lib/python3.7/site-packages/sklearn/metrics/classification.py", line 81, in _check_targets
"and {1} targets".format(type_true, type_pred))
ValueError: Classification metrics can't handle a mix of binary and continuous targets
这是我的整个数据集(在抽样下),显示以下代码错误:
答案 0 :(得分:4)
(在上面的-now remove-注释中做出澄清后的答案:)
您所有注释掉的模型都不是分类器,而是回归模型,对于这些模型,准确性没有意义。
您会收到错误消息,因为这些回归模型不会产生二进制结果,而是连续(浮动)数字(就像所有回归模型一样);因此,当scikit-learn尝试通过将二进制数(真标签)与浮点数(预测值)进行比较来计算准确性时,它不会意外地产生错误。错误消息本身就清楚地表明了这一原因:
Classification metrics can't handle a mix of binary and continuous target
还请注意,在第一条评论中建议question中接受的(并且被高度评价...!)答案可能与您的重复错误;此处的根本原因是在LinearRegression
模型中使用准确性,正如已经说过的那样,毫无意义。
答案 1 :(得分:0)
我使用vecstack
使用了一些模型进行堆叠,并设置了needs_proba=True
,然后出现此错误。我通过在堆栈内部更改指标解决了该问题。因为默认情况下,堆叠使用类预测,所以如果您想获得概率,也应该更改指标。我已将新功能定义为指标:
def get_classification_metric(testy, probs):
from sklearn.metrics import precision_recall_curve
precision, recall, thresholds = precision_recall_curve(testy, probs[:,1])
# convert to f score
fscore = (2 * precision * recall) / (precision + recall)
# locate the index of the largest f score
ix = np.argmax(fscore)
return fscore[ix]
此功能可在最佳阈值下找到最高的F1分数。因此,只需在堆叠函数中设置metric=get_classification_metric
。