我有一个网格,其中包含一些极坐标数据,模拟从LIDAR获得的SLAM问题数据。网格中的每一行代表角度,每一列代表距离。网格中包含的值存储了笛卡尔世界占用地图的加权概率。
转换为笛卡尔坐标后,我得到如下信息:
此映射旨在在FastSLAM应用程序中工作,至少有10个粒子。我获得的性能不足以实现可靠的应用程序。
我已经尝试过使用scipy.ndimage.geometric_transform库并使用预先计算的坐标直接访问网格的嵌套循环。
在这些示例中,我使用的是800x800网格。
嵌套循环:大约300毫秒
i = 0
for scan in scans:
hit = scan < laser.range_max
if hit:
d = np.linspace(scan + wall_size, 0, num=int((scan+ wall_size)/cell_size))
else:
d = np.linspace(scan, 0, num=int(scan/cell_size))
for distance in distances:
x = int(pos[0] + d * math.cos(angle[i]+pos[2]))
y = int(pos[1] + d * math.sin(angle[i]+pos[2]))
if distance > scan:
grid_cart[y][x] = grid_cart[y][x] + hit_weight
else:
grid_cart[y][x] = grid_cart[y][x] + miss_weight
i = i + 1
Scipy库(Described here):aprox 2500毫秒(由于它可以对空单元格进行插值,因此结果更平滑)
grid_cart = S.ndimage.geometric_transform(weight_mat, polar2cartesian,
order=0,
output_shape = (weight_mat.shape[0] * 2, weight_mat.shape[0] * 2),
extra_keywords = {'inputshape':weight_mat.shape,
'origin':(weight_mat.shape[0], weight_mat.shape[0])})
def polar2cartesian(outcoords, inputshape, origin):
"""Coordinate transform for converting a polar array to Cartesian coordinates.
inputshape is a tuple containing the shape of the polar array. origin is a
tuple containing the x and y indices of where the origin should be in the
output array."""
xindex, yindex = outcoords
x0, y0 = origin
x = xindex - x0
y = yindex - y0
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
theta_index = np.round((theta + np.pi) * inputshape[1] / (2 * np.pi))
return (r,theta_index)
预计算索引:80ms
for i in range(0, 144000):
gird_cart[ys[i]][xs[i]] = grid_polar_1d[i]
我不太习惯python和numpy,我觉得我跳过了解决此问题的简便方法。还有其他解决方案吗?
非常感谢大家!
答案 0 :(得分:0)
我遇到了一段似乎快10倍(8毫秒)的代码:
angle_resolution = 1
range_max = 400
a, r = np.mgrid[0:int(360/angle_resolution),0:range_max]
x = (range_max + r * np.cos(a*(2*math.pi)/360.0)).astype(int)
y = (range_max + r * np.sin(a*(2*math.pi)/360.0)).astype(int)
for i in range(0, int(360/angle_resolution)):
cart_grid[y[i,:],x[i,:]] = polar_grid[i,:]