转换日期,例如2018年8月-> 01-08-2018 ??
这是我的示例输入
id year_pass
1 Aug 2018 - Nov 2018
2 Jul 2017 - Oct 2017
输出应为:
id year_pass
1 01-08-2018
2 01-07-2017
OR
id year_start year_end
1 01-08-2018 01-11-2018
2 01-07-2018 01-10-2018
答案 0 :(得分:0)
这是一个解决方案。
import pandas as pd
import numpy as np
from datetime import datetime
# creating the sample dataframe
df = pd.DataFrame([[0.57, 'Aug 2018 - Nov 2018'],
[0.11, 'Jul 2017 - Oct 2017']],
columns=['id', 'year_pass'])
# splitting the date column on the '-'
year_start, year_end = df['year_pass'].str.split('-')
df.drop('year_pass', axis=1, inplace=True)
# assigning the split values to columns
df['year_start'] = year_start
df['year_end'] = year_end
# converting to datetime objects
df['year_start'] = pd.to_datetime(df['year_start'])
df['year_end'] = pd.to_datetime(df['year_end'])
答案 1 :(得分:0)
您可以先像这样拆分year_pass列:
new_df = df.year_pass.str.split(' - ')
new_df1 = new_df.apply(pd.Series)
new_df2 = pd.to_datetime(new_df1[0])
然后,您可以将结果数据框合并到实际数据框。 把它在一个代码行:
new_df = pd.to_datetime(df.year_pass.str.split(' - ').apply(pd.Series)[0])
日期格式为YYYY-MM-DD,而不是DD-MM-YYYY