我想从Jupyter笔记本中为已经在Jupyter中上传的其他文件设置位置。
这是代码,我猜错的那一行是第一行:
location = os.path.normpath('localhost:888/notebooks/project')
data = {
'train': { 'file': 'train_modified.csv', 'location': 0 },
'test': { 'file': 'test_modified.csv', 'location': 0 },
'query': { 'file': 'query.csv', 'location': 1 },
'slots': { 'file': 'train_labels.csv', 'location': 1 }
}
for item in data.values():
location = locations[item['location']]
path = os.path.join('..', location, item['file'])
if os.path.exists(path):
print("Reusing locally cached:", item['file'])
# Update path
item['file'] = path
elif os.path.exists(item['file']):
print("Reusing locally cached:", item['file'])
运行此代码可以正常工作。
但是,当我继续工作时,出现以下错误:
RuntimeError Traceback (most recent call last)
<ipython-input-26-c873a36fb4b7> in <module>
1 # peek
----> 2 reader = create_reader(data['train']['file'], is_training=True)
3 reader.streams.keys()
<ipython-input-23-81736f039ae7> in create_reader(path, is_training)
4 intent_unused = C.io.StreamDef(field='S1', shape=num_intents, is_sparse=True),
5 slot_labels = C.io.StreamDef(field='S2', shape=num_labels, is_sparse=True)
----> 6 )), randomize=is_training, max_sweeps = C.io.INFINITELY_REPEAT if is_training else 1)
~\Anaconda333\lib\site-packages\cntk\io\__init__.py in __init__(self, deserializers, max_samples, max_sweeps, randomization_window_in_chunks, randomization_window_in_samples, randomization_seed, trace_level, multithreaded_deserializer, frame_mode, truncation_length, randomize)
191 config.randomization_window_in_samples = 0
192
--> 193 source = cntk_py.create_composite_minibatch_source(config)
194 # transplant into this class instance
195 self.__dict__ = source.__dict__
RuntimeError: Expected a sequence id at the offset 0, none was found.
[CALL STACK]
> CreateDeserializer
- Microsoft::MSR::CNTK::IDataReader:: SupportsDistributedMBRead (x3)
- CreateDeserializer
- CreateCompositeDataReader (x3)
- CNTK:: UniversalLearner
- CNTK:: CreateCompositeMinibatchSource
- PyInit__cntk_py
- PyCFunction_FastCallDict
- PyObject_GetAttr
- PyEval_EvalFrameDefault
- PyObject_IsInstance
- PyFunction_FastCallDict
感谢您的帮助
答案 0 :(得分:1)
您可能想看看this
其次,假设以下标签中有一个数据集 分隔文本格式:*第一列是序列ID:例如0 是sequecne 0的ID;并且1是序列1的ID。*第二个 列以符号“ |”开头。这就是名为“ x”的功能 训练数据中单词的稀疏表示。 * 第三 列再次以符号“ |”开头。我们的名字叫“ y” 是标签的一键表示。
基本上,我认为您的源数据文件格式不正确。您可能需要在每行的开头添加一个序列ID。