使用Python SDK的内置算法的Amazon SageMaker超参数调整错误

时间:2019-01-30 02:58:11

标签: python amazon-web-services amazon-sagemaker hyperparameters

在使用Python SDK通过以下代码的内置算法之一(在本例中为图像分类器)启动SageMaker超参数调整作业时:

# [...] Some lines elided for brevity

from sagemaker.tuner import HyperparameterTuner, IntegerParameter, CategoricalParameter, ContinuousParameter
hyperparameter_ranges = {'optimizer': CategoricalParameter(['sgd', 'adam']),
                         'learning_rate': ContinuousParameter(0.0001, 0.2),
                         'mini_batch_size': IntegerParameter(2, 30),}

objective_metric_name = 'validation:accuracy'

tuner = HyperparameterTuner(image_classifier,
                            objective_metric_name,
                            hyperparameter_ranges,

                            max_jobs=50,
                            max_parallel_jobs=3)

tuner.fit(inputs=data_channels, logs=True)

作业失败,在SageMaker Web控制台中检查作业状态时出现此错误:

ClientError: Additional hyperparameters are not allowed (u'sagemaker_estimator_module', u'sagemaker_estimator_class_name' were unexpected) (caused by ValidationError) 

Caused by: Additional properties are not allowed (u'sagemaker_estimator_module', u'sagemaker_estimator_class_name' were unexpected) 

Failed validating u'additionalProperties' in schema: {u'$schema': u'http://json-schema.org/schema#', u'additionalProperties': False, u'definitions': {u'boolean_0_1': {u'oneOf': [{u'enum': [u'0', u'1'], u'type': u'string'}, {u'enum': [0, 1], u'type': u'number'}]}, u'boolean_true_false_0_1': {u'oneOf': [{u'enum': [u'true', u'false',

我没有在任何地方显式传递sagemaker_estimator_modulesagemaker_estimator_class_name属性,因此我不确定为什么返回此错误。

开始进行此调优工作的正确方法是什么?

1 个答案:

答案 0 :(得分:1)

我通过this post translated from Japanese找到了答案。

使用Python SDK中的内置算法开始超参数调整作业时,您需要像这样将include_cls_metadata=False 作为关键字参数明确传递给tuner.fit():< / p>

tuner.fit(inputs=data_channels, logs=True, include_cls_metadata=False)