如何使用forcats根据另一个变量的子集(构面)对因子进行重新排序?

时间:2019-01-29 22:58:35

标签: r forcats

forcats vignette指出

  

forcats软件包的目标是提供一套有用的工具   通过因素解决常见问题

实际上,其中一种工具是通过另一个变量对因子进行重新排序,这是绘制数据时非常常见的用例。我试图使用forcats完成此操作,但是在多面图的情况下。也就是说,我想通过其他变量对因子进行重新排序,但仅使用数据的子集。这是一个代表:

library(tidyverse)

ggplot2::diamonds %>% 
    group_by(cut, clarity) %>% 
    summarise(value = mean(table, na.rm = TRUE)) %>%
    ggplot(aes(x = clarity, y = value, color = clarity)) + 
    geom_segment(aes(xend = clarity, y = min(value), yend = value), 
                 size = 1.5, alpha = 0.5) + 
    geom_point(size = 3) + 
    facet_grid(rows = "cut", scales = "free") +
    coord_flip() +
    theme(legend.position = "none")

这段代码产生的绘图接近我想要的:

enter image description here

但是我希望清晰度轴按值排序,因此我可以快速找出哪个清晰度最高。但是,每个方面都意味着不同的顺序。因此,我想选择按特定构面内的值对图进行排序。

在这种情况下,直接使用forcats当然是行不通的,因为这将基于所有值(不仅是特定构面的值)对因子进行重新排序。让我们开始吧:

# Inserting this line right before the ggplot call
mutate(clarity = forcats::fct_reorder(clarity, value)) %>%

然后生成此图。 enter image description here

当然,它会基于整个数据对因子进行重新排序,但是如果我想让图按“理想”切割的值排序,该怎么办?我该如何使用forcats来做到这一点?

我当前的解决方案如下:

ggdf <- ggplot2::diamonds %>% 
    group_by(cut, clarity) %>% 
    summarise(value = mean(table, na.rm = TRUE))

# The trick would be to create an auxiliary factor using only
# the subset of the data I want, and then use the levels
# to reorder the factor in the entire dataset.
#
# Note that I use good-old reorder, and not the forcats version
# which I could have, but better this way to emphasize that
# so far I haven't found the advantage of using forcats 
reordered_factor <- reorder(ggdf$clarity[ggdf$cut == "Ideal"], 
                            ggdf$value[ggdf$cut == "Ideal"])

ggdf$clarity <- factor(ggdf$clarity, levels = levels(reordered_factor))

ggdf %>%
    ggplot(aes(x = clarity, y = value, color = clarity)) + 
    geom_segment(aes(xend = clarity, y = min(value), yend = value), 
                 size = 1.5, alpha = 0.5) + 
    geom_point(size = 3) + 
    facet_grid(rows = "cut", scales = "free") +
    coord_flip() +
    theme(legend.position = "none")

生产我想要的东西。

enter image description here

但是我想知道是否有使用forcats的更优雅/更聪明的方法。

1 个答案:

答案 0 :(得分:1)

如果您要按特定构面的值对clarity重新排序,则必须告诉forcats::fct_reorder()这样做,例如

mutate(clarity = forcats::fct_reorder(
    clarity, filter(., cut == "Ideal") %>% pull(value)))

仅使用“理想”构面的值进行重新排序。

因此

ggplot2::diamonds %>% 
  group_by(cut, clarity) %>% 
  summarise(value = mean(table, na.rm = TRUE)) %>%
  mutate(clarity = forcats::fct_reorder(
    clarity, filter(., cut == "Ideal") %>% pull(value))) %>%
  ggplot(aes(x = clarity, y = value, color = clarity)) + 
  geom_segment(aes(xend = clarity, y = min(value), yend = value), 
               size = 1.5, alpha = 0.5) + 
  geom_point(size = 3) + 
  facet_grid(rows = "cut", scales = "free") +
  coord_flip() +
  theme(legend.position = "none")

创建

enter image description here

根据要求。