forcats
vignette指出
forcats软件包的目标是提供一套有用的工具 通过因素解决常见问题
实际上,其中一种工具是通过另一个变量对因子进行重新排序,这是绘制数据时非常常见的用例。我试图使用forcats
完成此操作,但是在多面图的情况下。也就是说,我想通过其他变量对因子进行重新排序,但仅使用数据的子集。这是一个代表:
library(tidyverse)
ggplot2::diamonds %>%
group_by(cut, clarity) %>%
summarise(value = mean(table, na.rm = TRUE)) %>%
ggplot(aes(x = clarity, y = value, color = clarity)) +
geom_segment(aes(xend = clarity, y = min(value), yend = value),
size = 1.5, alpha = 0.5) +
geom_point(size = 3) +
facet_grid(rows = "cut", scales = "free") +
coord_flip() +
theme(legend.position = "none")
这段代码产生的绘图接近我想要的:
但是我希望清晰度轴按值排序,因此我可以快速找出哪个清晰度最高。但是,每个方面都意味着不同的顺序。因此,我想选择按特定构面内的值对图进行排序。
在这种情况下,直接使用forcats
当然是行不通的,因为这将基于所有值(不仅是特定构面的值)对因子进行重新排序。让我们开始吧:
# Inserting this line right before the ggplot call
mutate(clarity = forcats::fct_reorder(clarity, value)) %>%
当然,它会基于整个数据对因子进行重新排序,但是如果我想让图按“理想”切割的值排序,该怎么办?我该如何使用forcats
来做到这一点?
我当前的解决方案如下:
ggdf <- ggplot2::diamonds %>%
group_by(cut, clarity) %>%
summarise(value = mean(table, na.rm = TRUE))
# The trick would be to create an auxiliary factor using only
# the subset of the data I want, and then use the levels
# to reorder the factor in the entire dataset.
#
# Note that I use good-old reorder, and not the forcats version
# which I could have, but better this way to emphasize that
# so far I haven't found the advantage of using forcats
reordered_factor <- reorder(ggdf$clarity[ggdf$cut == "Ideal"],
ggdf$value[ggdf$cut == "Ideal"])
ggdf$clarity <- factor(ggdf$clarity, levels = levels(reordered_factor))
ggdf %>%
ggplot(aes(x = clarity, y = value, color = clarity)) +
geom_segment(aes(xend = clarity, y = min(value), yend = value),
size = 1.5, alpha = 0.5) +
geom_point(size = 3) +
facet_grid(rows = "cut", scales = "free") +
coord_flip() +
theme(legend.position = "none")
生产我想要的东西。
但是我想知道是否有使用forcats
的更优雅/更聪明的方法。
答案 0 :(得分:1)
如果您要按特定构面的值对clarity
重新排序,则必须告诉forcats::fct_reorder()
这样做,例如
mutate(clarity = forcats::fct_reorder(
clarity, filter(., cut == "Ideal") %>% pull(value)))
仅使用“理想”构面的值进行重新排序。
因此
ggplot2::diamonds %>%
group_by(cut, clarity) %>%
summarise(value = mean(table, na.rm = TRUE)) %>%
mutate(clarity = forcats::fct_reorder(
clarity, filter(., cut == "Ideal") %>% pull(value))) %>%
ggplot(aes(x = clarity, y = value, color = clarity)) +
geom_segment(aes(xend = clarity, y = min(value), yend = value),
size = 1.5, alpha = 0.5) +
geom_point(size = 3) +
facet_grid(rows = "cut", scales = "free") +
coord_flip() +
theme(legend.position = "none")
创建
根据要求。