我最初有各种各样的宽数据(4行158列),我使用reshape::melt()
创建了一个长数据集(624行x 3列)。
但是,现在我有一个这样的数据集:
demo <- data.frame(region = as.factor(c("North", "South", "East", "West")),
criteria = as.factor(c("Writing_1_a", "Writing_2_a", "Writing_3_a", "Writing_4_a",
"Writing_1_b", "Writing_2_b", "Writing_3_b", "Writing_4_b")),
counts = as.integer(c(18, 27, 99, 42, 36, 144, 99, 9)))
哪个会生成与以下表格相似的表格:
region criteria counts
North Writing_1_a 18
South Writing_2_a 27
East Writing_3_a 99
West Writing_4_a 42
North Writing_1_b 36
South Writing_2_b 144
East Writing_3_b 99
West Writing_4_b 9
现在我要创建的内容是这样的:
goal <- data.frame(region = as.factor(c("North", "South", "East", "West")),
criteria = as.factor(c("Writing_1", "Writing_2", "Writing_3", "Writing_4")),
counts = as.integer(c(54, 171, 198, 51)))
表示当我合拢条件列时,它会对计数求和:
region criteria counts
North Writing_1 54
South Writing_2 171
East Writing_3 198
West Writing_4 51
我尝试使用forcats::fct_collapse
和forcats::recode()
,但无济于事-我很肯定我做得不好。预先感谢您提供的任何帮助。
答案 0 :(得分:0)
使用正则表达式的dplyr解决方案:
demo %>%
mutate(criteria = gsub("(_a)|(_b)", "", criteria)) %>%
group_by(region, criteria) %>%
summarize(counts = sum(counts)) %>%
arrange(criteria) %>%
as.data.frame
region criteria counts
1 North Writing_1 54
2 South Writing_2 171
3 East Writing_3 198
4 West Writing_4 51
答案 1 :(得分:0)
您可以考虑要尝试执行哪些操作来更改因子级别-fct_collapse
将多个级别手动折叠为一个级别,而fct_recode
将手动更改各个级别的标签。您尝试做的是基于应用某些功能来更改所有标签,在这种情况下,fct_relabel
是合适的。
您可以在调用fct_relabel
时写出一个匿名函数,或仅将其名称传递给函数名称以及该函数的参数。在这种情况下,您可以使用stringr::str_remove
查找和删除正则表达式模式,并使用_[a-z]$
之类的正则表达式删除出现在字符串末尾的任何下划线和小写字母。这样,它就可以很好地与您的真实数据进行缩放,但是如果没有,您可以进行调整。
library(tidyverse)
...
new_crits <- demo %>%
mutate(crit_no_digits = fct_relabel(criteria, str_remove, "_[a-z]$"))
new_crits
#> region criteria counts crit_no_digits
#> 1 North Writing_1_a 18 Writing_1
#> 2 South Writing_2_a 27 Writing_2
#> 3 East Writing_3_a 99 Writing_3
#> 4 West Writing_4_a 42 Writing_4
#> 5 North Writing_1_b 36 Writing_1
#> 6 South Writing_2_b 144 Writing_2
#> 7 East Writing_3_b 99 Writing_3
#> 8 West Writing_4_b 9 Writing_4
验证此新变量仅具有所需级别:
levels(new_crits$crit_no_digits)
#> [1] "Writing_1" "Writing_2" "Writing_3" "Writing_4"
然后根据该新因素进行总结:
new_crits %>%
group_by(crit_no_digits) %>%
summarise(counts = sum(counts))
#> # A tibble: 4 x 2
#> crit_no_digits counts
#> <fct> <int>
#> 1 Writing_1 54
#> 2 Writing_2 171
#> 3 Writing_3 198
#> 4 Writing_4 51
由reprex package(v0.2.1)于2018-11-04创建