我在python和R中都尝试过朴素贝叶斯,并获得了不同的AUROC值。为什么会这样?
R代码:
library(bnlearn)
library(pROC)
library(tm)
corpus <- VCorpus(VectorSource(paste(data$TEXT, sep = ' ')))
dtm <- DocumentTermMatrix(corpus, control = list(tolower = TRUE,
removeNumbers = FALSE,
stopwords = TRUE,
removePunctuation = TRUE,
stemming = TRUE))
convert_codes <- function(x) { x <- ifelse(x > 0, 1, 0) }
dtm <- apply(dtm, MARGIN = 2,convert_codes)
dtm <- as.data.frame(dtm)
model <- naive.bayes(dtm, approval, colnames(dtm)[-length(dtm)])
preds <- predict(model, dtm, prior = c(0.5, 0.5), prob = TRUE)
data$SCORE <- t(attr(preds, "prob"))[,2]
data$SCORE[is.nan(data$SCORE)] <- 0
print(auc(data$APPROVAL, data$SCORE))
结果= 0.93
Python代码:
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics import roc_auc_score
from sklearn.pipeline import Pipeline
from sklearn.naive_bayes import MultinomialNB
pipe = Pipeline([
('vectorizer', CountVectorizer()),
('model', MultinomialNB())
])
pipe.fit(data["TEXT"], data["APPROVAL"])
preds = pipe.predict_proba(data["TEXT"])
print(roc_auc_score(data["APPROVAL"], preds[:,1]))
结果= 0.76
为什么会有如此大的差异?
答案 0 :(得分:0)
您在R和Python中定义的管道不同:
weighting
的{{1}}参数默认为DocumentTermMatrix
,因此不考虑idf组件。weightTf
具有默认参数TfidfVectorizer
,因此它使用idf组件。