背景:我对整个Spark平台和概念完全陌生,我正在尝试学习如何通过R
和sparklyr
来操作它。我开始关注有关该主题的在线课程,并且尝试将其用于自己的数据分析,以此作为学习方法。
问题:我正在尝试加载6.3gb的CSV数据集(约3000万行,约20列),但出现以下错误(据我所知,相同的块不断重复自己,我在这里给出其中的前3个,否则我将达到该职位的字符数限制)。该代码可以运行,但是在17分钟后会退出,并显示以下错误(未加载任何数据):
Error: java.lang.IllegalStateException: Cannot call methods on a stopped SparkContext.
This stopped SparkContext was created at:
org.apache.spark.SparkContext.getOrCreate(SparkContext.scala)
sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
java.lang.reflect.Method.invoke(Unknown Source)
sparklyr.Invoke.invoke(invoke.scala:139)
sparklyr.StreamHandler.handleMethodCall(stream.scala:123)
sparklyr.StreamHandler.read(stream.scala:66)
sparklyr.BackendHandler.channelRead0(handler.scala:51)
sparklyr.BackendHandler.channelRead0(handler.scala:4)
io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:367)
io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:353)
io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:346)
io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:102)
io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:367)
io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:353)
io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:346)
io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:293)
io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:267)
The currently active SparkContext was created at:
org.apache.spark.SparkContext.getOrCreate(SparkContext.scala)
sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
java.lang.reflect.Method.invoke(Unknown Source)
sparklyr.Invoke.invoke(invoke.scala:139)
sparklyr.StreamHandler.handleMethodCall(stream.scala:123)
sparklyr.StreamHandler.read(stream.scala:66)
sparklyr.BackendHandler.channelRead0(handler.scala:51)
sparklyr.BackendHandler.channelRead0(handler.scala:4)
io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:367)
io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:353)
io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:346)
io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:102)
io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:367)
io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:353)
io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:346)
io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:293)
io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:267)
at org.apache.spark.SparkContext.assertNotStopped(SparkContext.scala:100)
at org.apache.spark.SparkContext$$anonfun$parallelize$1.apply(SparkContext.scala:716)
at org.apache.spark.SparkContext$$anonfun$parallelize$1.apply(SparkContext.scala:715)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.SparkContext.withScope(SparkContext.scala:701)
at org.apache.spark.SparkContext.parallelize(SparkContext.scala:715)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:74)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:114)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:135)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:132)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:113)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:87)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:87)
at org.apache.spark.sql.Dataset.<init>(Dataset.scala:185)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:64)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:592)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at sparklyr.Invoke.invoke(invoke.scala:139)
at sparklyr.StreamHandler.handleMethodCall(stream.scala:123)
at sparklyr.StreamHandler.read(stream.scala:66)
at sparklyr.BackendHandler.channelRead0(handler.scala:51)
at sparklyr.BackendHandler.channelRead0(handler.scala:4)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:367)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:353)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:346)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:102)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:367)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:353)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:346)
at io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:293)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:267)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:367)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:353)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:346)
at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1294)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:367)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:353)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:911)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:652)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:575)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:489)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:451)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:140)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)
at java.lang.Thread.run(Unknown Source)
Error: java.lang.IllegalStateException: Cannot call methods on a stopped SparkContext.
This stopped SparkContext was created at:
这是我的R代码:
library(sparklyr)
spark_install(version = "2.1.0")
sc <- spark_connect(master = "local")
testdata = spark_read_csv(sc, name = "testdata", path = ...)
在Spark之外,我可以加载文件,例如使用read_csv
。我在问题上进行了搜索,并提到了潜在原因是内存不足问题-我不太确定这是否是问题以及如何解决。
如果有人能指出一种调试和修复它的方法,我将不胜感激!
欢呼
答案 0 :(得分:1)
几件事:
除非您使用少量数据,否则您应该忘记local
模式。它主要是为测试和小规模实验而设计的,不适用于中等大小的数据。
由于它仅将单个JVM用于驱动程序和执行程序代码,因此可能会导致严重的错误恢复,并且如果处理过程AWOL,您可能会丢失整个会话(在这里似乎是这种情况)。
因此,如果您想在中等大小的数据上进行本地测试,请考虑使用standalone mode,否则请缩小数据集的大小。
在旁注local
模式下仅使用一个处理线程。即使是进行测试,使用local[n]
(对于n
线程)或local[*]
(对于所有可用内核)也更有意义。
准备好调整配置,因为默认值非常保守-例如spark.driver.memory
默认为1 GB-在独立模式下您可能会忽略它,但是在所有组件都处于独立状态时则不能使用嵌入在单个JVM中。
不信任sparklyr的默认设置。
sparklyr开发人员非常不幸地选择了默认情况下急于在内存中缓存数据。它不仅违反Spark的默认设置(for a reason,对MEMORY_AND_DISK
的API使用Dataset
),并且几乎没有提供实际大小的数据的实际好处,而且在某种程度上干扰了Spark优化器方式(最显着的是防止投影和选择下推)。
因此养成在适当的时候使用memory = FALSE
的习惯:
spark_read_csv(sc, name = "testdata", memory = FALSE, path = ...)
为阅读器提供模式,而不使用模式推断。参见SparklyR: Convert directly to parquet