Error "Invalid method csv for object" when using spark_read_csv in sparklyr

时间:2017-05-31 13:12:56

标签: r hadoop apache-spark sparkr sparklyr

I'm trying to read data in R from the hdfs. One thing I'm struggling with when using sparklyr is deciphering the error messages ...because I am not a java programmer.

Consider this example:

DO THIS IN R

create abalone dataframe - abalone is a dataset used for machine learning examples

load pivotal R package #contains abalone data and create dataframe
if (!require(PivotalR)){ 
  install.packages(PivotalR) }

data(abalone)

#sample of data
head(abalone)

#export data to a CSV file
if (!require(readr)){ 
  install.packages(readr) }
write_csv(abalone,'abalone.csv')
DO THIS AT THE COMMAND LINE
hdfs dfs -put abalone.csv abalone.csv
#check to see if the file is on the hdfs
hdfs dfs -ls

DO THIS IN R This is set up to use your current version of spark you might have to change spark_home

  library(sparklyr)
    library(SparkR)
    sc = spark_connect(master = 'yarn-client',
                       spark_home = '/usr/hdp/current/spark-client',
                       app_name = 'sparklyr',
                       config = list(
                         "sparklyr.shell.executor-memory" = "1G",
                         "sparklyr.shell.driver-memory"   = "4G",
                         "spark.driver.maxResultSize"     = "2G" # may need to transfer a lot of data into R 
    )
    )

Read in abalone file that we just wrote to the HDFS. You will have to change the path to match your path.

df <- spark_read_csv(sc,name='abalone',path='hdfs://pnhadoop/user/stc004/abalone.csv',delimiter=",",
                         header=TRUE)

I'm getting the following error:

Error: java.lang.IllegalArgumentException: invalid method csv for object 63
        at sparklyr.Invoke$.invoke(invoke.scala:113)
        at sparklyr.StreamHandler$.handleMethodCall(stream.scala:89)
        at sparklyr.StreamHandler$.read(stream.scala:55)
        at sparklyr.BackendHandler.channelRead0(handler.scala:49)
        at sparklyr.BackendHandler.channelRead0(handler.scala:14)
        at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
        at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
        at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
        at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:103)
        at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
        at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
        at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:244)
        at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:308)
        at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:294)
        at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:846)
        at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:131)
        at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
        at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
        at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
        at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
        at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
        at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:137)
        at java.lang.Thread.run(Thread.java:745)

No idea what's going on . I've used spark_read_csv previously without error. I don't know how to decipher the java errors. Thoughts?

1 个答案:

答案 0 :(得分:1)

Spark 2.1.0

sparkR.session( sparkConfig = list(),enableHiveSupport= FALSE)
df1 <- read.df(path="hdfs://<yourpath>/*",source="csv",na.strings = "NA", delimiter="\u0001")
head(df1)