我正在尝试从网站获取表格。该网站的URL包含日期,因此我必须遍历日期才能获取历史数据。我生成的日期如下:
import datetime
start = datetime.datetime.strptime("26-09-2016", "%d-%m-%Y")
end = datetime.datetime.strptime("30-09-2016", "%d-%m-%Y")
date_generated = [start + datetime.timedelta(days=x) for x in range(0, (end-start).days)]
dates_list = []
for date in date_generated:
txt = str(str(date.day) + '.' + str(date.month) + '.' + str(date.year))
dates_list.append(txt)
dates_list
此后,我运行下面的代码来连接所有表:
for i in range(0, 3):
allURL = 'https://www.uzse.uz/trade_results?date=' + dates_list[i] + '&locale=en&mkt_id=ALL&page=%d'
ndf_list = []
for i in range(1, 100):
url = allURL %i
if pd.read_html(url)[0].empty:
break
else :
ndf_list.append(pd.read_html(url)[0])
ndf = pd.concat(ndf_list)
ndf.insert(0, 'Date', dates_list[i])
mdf = pd.concat(ndf, ignore_index = True)
mdf
但是,这不起作用,我得到了:
TypeError: first argument must be an iterable of pandas objects, you passed an object of type "DataFrame"
我不明白我在做什么错。我预计将从9月26日,27日和28日开始提供一张桌子。
请帮助。
答案 0 :(得分:1)
不确定最后一行,但是我会这样处理
import datetime
import pandas as pd
start = datetime.datetime.strptime("26-09-2016", "%d-%m-%Y")
end = datetime.datetime.strptime("30-09-2016", "%d-%m-%Y")
date_generated = [
start + datetime.timedelta(days=x) for x in range(0, (end-start).days)]
dates_list = []
for date in date_generated:
txt = str(str(date.day) + '.' + str(date.month) + '.' + str(date.year))
dates_list.append(txt)
dates_list
ndf = pd.DataFrame() # create empty ndf
for i in range(0, 3):
allURL = 'https://www.uzse.uz/trade_results?date=' + \
dates_list[i] + '&locale=en&mkt_id=ALL&page=%d'
# ndf_list = []
for j in range(1, 100):
url = allURL % j
if pd.read_html(url)[0].empty:
break
else:
# ndf_list.append(pd.read_html(url)[0])
chunk = pd.read_html(url)[0]
chunk['Date'] = dates_list[i] # Date is positioned at last position, let's fix that
# get a list of all the columns
cols = chunk.columns.tolist()
# rearrange the columns, move the last element (Date) to the first position
cols = cols[-1:] + cols[:-1]
# reorder the dataframe
chunk = chunk[cols]
ndf = pd.concat([ndf, chunk])
# ndf = pd.concat(ndf_list)
# ndf.insert(0, 'Date', dates_list[i])
print(ndf)
# mdf = pd.concat(ndf, ignore_index=True)
# mdf