我有一个布尔变量的数据框,由时间戳标识。时间戳是不规则的,我希望填补空白。我知道所需的频率是3毫秒。
到目前为止,我可以执行以下操作:
df = pd.read_csv(path, sep= ';')
df['timestamp'] = pd.to_datetime(df ['timestamp'], errors='raise',infer_datetime_format = True)
df = df.sort(['timestamp'])
df = df.set_index('timestamp')
df.reindex(pd.period_range(df.index[0], df.index[-1], freq='ms'))
df = df.fillna(method = 'ffill')
因此,我使用ms间隔重新索引并填充缺失值(这正是我的情况:所有变量均为布尔值,因此在每时每刻,当前状态都是数据中的最后一个出现)。
如何每3毫秒重新采样一次?
EDIT:似乎DataFrame.resample也可以用于上采样。关于如何在我的情况下使用它的任何建议?我似乎不知道它是如何工作的。
答案 0 :(得分:2)
df = pd.DataFrame({
'timestamp': pd.to_datetime(['2015-02-01 15:14:11.30',
'2015-02-01 15:14:11.36',
'2015-02-01 15:14:11.39']),
'B': [7,10,3]
})
print (df)
timestamp B
0 2015-02-01 15:14:11.300 7
1 2015-02-01 15:14:11.360 10
2 2015-02-01 15:14:11.390 3
df = df.set_index('timestamp').asfreq('3ms', method='ffill')
print (df)
B
timestamp
2015-02-01 15:14:11.300 7
2015-02-01 15:14:11.303 7
2015-02-01 15:14:11.306 7
2015-02-01 15:14:11.309 7
2015-02-01 15:14:11.312 7
2015-02-01 15:14:11.315 7
2015-02-01 15:14:11.318 7
2015-02-01 15:14:11.321 7
2015-02-01 15:14:11.324 7
2015-02-01 15:14:11.327 7
2015-02-01 15:14:11.330 7
2015-02-01 15:14:11.333 7
2015-02-01 15:14:11.336 7
2015-02-01 15:14:11.339 7
2015-02-01 15:14:11.342 7
2015-02-01 15:14:11.345 7
2015-02-01 15:14:11.348 7
2015-02-01 15:14:11.351 7
2015-02-01 15:14:11.354 7
2015-02-01 15:14:11.357 7
2015-02-01 15:14:11.360 10
2015-02-01 15:14:11.363 10
2015-02-01 15:14:11.366 10
2015-02-01 15:14:11.369 10
2015-02-01 15:14:11.372 10
2015-02-01 15:14:11.375 10
2015-02-01 15:14:11.378 10
2015-02-01 15:14:11.381 10
2015-02-01 15:14:11.384 10
2015-02-01 15:14:11.387 10
2015-02-01 15:14:11.390 3
答案 1 :(得分:1)
如果您的时间戳记在索引中:
sys.stdout
编辑:
性能基准
df = df.resample('3ms').ffill()
结果:
import time
import pandas as pd
dd = {'dt': ['2018-01-01 00:00:00', '2018-01-01 01:12:59'], 'v':[1,1]}
df = pd.DataFrame(data=dd)
df['dt'] = pd.to_datetime(df['dt'])
df = df.set_index('dt')
start = time.time()
df = df.resample('3ms').ffill()
print(time.time() - start)
df = pd.DataFrame(data=dd)
df['dt'] = pd.to_datetime(df['dt'])
df = df.set_index('dt')
start = time.time()
df = df.asfreq('3ms', method='ffill')
print(time.time() - start)
print(df.shape)