我下面有两个字典:
word2int = {}
int2word = {}
for i,word in enumerate(words):
word2int[word] = i
int2word[i] = word
def euclidean_dist(vec1, vec2):
return np.sqrt(np.sum((vec1-vec2)**2))
def find_closest(word_index, vectors):
min_dist = 10000 # to act like positive infinity
min_index = -1
query_vector = vectors[word_index]
for index, vector in enumerate(vectors):
if euclidean_dist(vector, query_vector) < min_dist and not np.array_equal(vector, query_vector):
min_dist = euclidean_dist(vector, query_vector)
min_index = index
return min_index
我有一个输入字符串张量X
。我想使用X
中的word2int
索引,如下所示:
X = tf.placeholder(tf.string)
find_closest_word = tf.convert_to_tensor(int2word[find_closest(word2int[X], vectors)], dtype=tf.string)
如何将字符串张量X
转换为python字符串,以便可以将其用作word2int中的索引?
答案 0 :(得分:2)
如何将字符串张量X转换为python字符串,以便它可以 可以用作word2int中的索引?
除非调用sess.run(string_tensor)
,否则无法获取字符串值。
值得一提的是,有一种更干净的方法可以使用index_table_from_file
将id转换为单词,反之亦然。 Here是如何使用它的一个示例。