我正在尝试计算滚动的马哈拉诺比斯距离,而不求助于for循环和惨败。
这是一个示例数据集:
df <- data.frame(label = c(rep("A", 5), rep("B", 5)),
date = rep(seq.Date(from = as.Date("2018-01-01"), by = "days", length.out = 5), 2),
valx = c(rnorm(5, mean = 0, sd = 1), rnorm(5, mean = 1.5, sd = 1)),
valy = c(rnorm(5, mean = 100, sd = 10), rnorm(5, mean = 115, sd = 10)),
valz = c(rnorm(5, mean = 0, sd = 10), rnorm(5, mean = 0, sd = 30)))
我试图按组(label
)计算valx
,valy
和valz
的马哈拉诺比斯距离,但仅使用该日期之后的行(date
)或更早的版本。我当前的解决方案是遍历每个label
,遍历每个date
,将数据集过滤到匹配数据,使用stats::mahalanobis
计算距离,将该距离添加到列表中,然后do.call
和rbind
不在循环中*。显然,这并不理想。
我怀疑有某种写法:
cum.mdist <- function(df, cols) {...}
df %>%
group_by(label) %>%
arrange(date) %>%
mutate(mdist = xapply(., c(valx, valy, valz), cum.mdist)) %>%
ungroup()
以类似于计算滚动一元函数的方式,如下所示:
cumsd <- function(x) sapply(seq_along(x), function(k, z) sd(z[1:k]), z = x)
如果没有协方差,我可以计算到零件的距离(滚动方差方差很容易使用上述函数来计算),但是我认为我的变量 do 具有协方差,并且我不确定如何建立滚动协方差矩阵...
对此问题的解决方案是否存在于for循环之外?
*循环解决方案的代码如下:
library("tidyverse")
df <- data.frame(label = c(rep("A", 5), rep("B", 5)),
date = rep(seq.Date(from = as.Date("2018-01-01"), by = "days", length.out = 5), 2),
valx = c(rnorm(5, mean = 0, sd = 1), rnorm(5, mean = 1.5, sd = 1)),
valy = c(rnorm(5, mean = 100, sd = 10), rnorm(5, mean = 115, sd = 10)),
valz = c(rnorm(5, mean = 0, sd = 10), rnorm(5, mean = 0, sd = 30)))
mdist.list <- vector(length = nrow(df), mode = "list")
counter <- 1
for(l in seq_along(unique(df$label))){
label_data <- df %>%
filter(label == unique(df$label)[l])
for(d in seq_along(unique(label_data$date))){
label_date_data <- label_data %>%
filter(date <= unique(label_data$date)[d])
if(nrow(label_date_data) > 3){
label_date_data$mdist <- mahalanobis(label_date_data %>% select(contains("val")),
colMeans(label_date_data %>% select(contains("val"))),
cov(label_date_data %>% select(contains("val"))))
} else{
label_date_data$mdist <- NA
}
mdist.list[[counter]] <- filter(label_date_data,
date == unique(label_data$date)[d])
counter <- counter + 1
}
}
mdist.df <- do.call(rbind, mdist.list)
答案 0 :(得分:1)
不确定我是否正确理解您的要求或期望的输出,以下是使用data.table
来帮助您入门的信息:
library(data.table)
setDT(df)
df[, mdist :=
.SD[, transpose(lapply(1L:.N, function(n) {
ma <- .SD[1L:n]
ans <- tryCatch(mahalanobis(ma, colMeans(ma), var(ma)), error=function(e) NA)
ans[length(ans)]
})), by=.(label), .SDcols=valx:valz]$V1]
输出:
label date valx valy valz mdist
1: A 2018-01-01 1.262954285 7.635935 -2.2426789 NA
2: A 2018-01-02 -0.326233361 -7.990092 3.7739565 NA
3: A 2018-01-03 1.329799263 -11.476570 1.3333636 NA
4: A 2018-01-04 1.272429321 -2.894616 8.0418951 2.2500000
5: A 2018-01-05 0.414641434 -2.992151 -0.5710677 0.7260652
6: B 2018-01-01 -1.539950042 -4.115108 15.1082392 NA
7: B 2018-01-02 -0.928567035 2.522234 32.5730809 NA
8: B 2018-01-03 -0.294720447 -8.919211 -20.7286152 NA
9: B 2018-01-04 -0.005767173 4.356833 -38.5379806 2.2500000
10: B 2018-01-05 2.404653389 -12.375384 1.4017852 3.0800360
数据:
set.seed(0L)
df <- data.frame(label = c(rep("A", 5), rep("B", 5)),
date = rep(seq.Date(from = as.Date("2018-01-01"), by = "days", length.out = 5), 2),
valx = c(rnorm(5, mean = 0, sd = 1), rnorm(5, mean = 0, sd = 1)),
valy = c(rnorm(5, mean = 0, sd = 10), rnorm(5, mean = 0, sd = 10)),
valz = c(rnorm(5, mean = 0, sd = 10), rnorm(5, mean = 0, sd = 30)))
如果您仅寻找tidyverse
解决方案,我将删除此帖子。