我有两组,每组有3个变量,如下所示:
Group1:
cost time quality
[1,] 90 4 70
[2,] 4 27 37
[3,] 82 4 17
[4,] 18 41 4
组2:
cost time quality
[1,] 4 27 4
计算两组间马哈拉诺比斯距离的代码如下:
benchmark<-rbind(c(90,4,70),c(4,27,37),c(82,4,17),c(18,41,4))
colnames(benchmark)=c('cost','time','quality')
current=rbind(c(4,27,4))
colnames(current)=c('cost','time','quality')
bdm<-as.matrix(benchmark)
cdm<-as.matrix(current)
mat1<-matrix(bdm,ncol=ncol(bdm),dimnames=NULL)
mat2<-matrix(cdm,ncol=ncol(cdm),dimnames=NULL)
#center Data
mat1.1<-scale(mat1,center = T,scale = F)
mat2.1<-scale(mat2,center=T,scale=F)
#cov Matrix
mat1.2<-cov(mat1.1,method="pearson")
mat2.2<-cov(mat2.1,method="pearson")
#the pooled covariance is calculated using weighted average
n1<-nrow(mat1)
n2<-nrow(mat2)
n3<-n1+n2
#pooled matrix
#pooled matrix
mat3<-((n1/n3)*mat1.2) + ((n2/n3)*mat2.2)
mat4<-solve(mat3)
#Mean diff
mat5<-as.matrix((colMeans(mat1)-colMeans(mat2)))
#multiply
mat6<-t(mat5)%*%mat4
#Mahalanobis distance
sqrt(mat6 %*% mat5)
结果为NA,但当我输入以下链接calculate mahalanobis distance中的值来计算马哈拉诺比斯距离时,它显示了group1和group2之间的Mahalanobis距离= 2.4642
此外,我收到的错误消息是:
Error in ((n1/n3) * mat1.2) + ((n2/n3) * mat2.2) : non-conformable arrays
和警告信息:
In colMeans(mat1) - colMeans(mat2) :
longer object length is not a multiple of shorter object length
答案 0 :(得分:2)
我觉得你要做的事情必须存在于某个R
包中。经过彻底的搜索,我在包D.sq
中找到了函数asbio
,它看起来非常接近。此函数需要2个矩阵作为输入,因此它不适用于您的示例。我还包括一个修改版本,它接受第二个矩阵的向量。
# Original Function
D.sq <- function (g1, g2) {
dbar <- as.vector(colMeans(g1) - colMeans(g2))
S1 <- cov(g1)
S2 <- cov(g2)
n1 <- nrow(g1)
n2 <- nrow(g2)
V <- as.matrix((1/(n1 + n2 - 2)) * (((n1 - 1) * S1) + ((n2 -
1) * S2)))
D.sq <- t(dbar) %*% solve(V) %*% dbar
res <- list()
res$D.sq <- D.sq
res$V <- V
res
}
# Data
g1 <- matrix(c(90, 4, 70, 4, 27, 37, 82, 4, 17, 18, 41, 4), ncol = 3, byrow = TRUE)
g2 <- c(2, 27, 4)
# Function modified to accept a vector for g2 rather than a matrix
D.sq2 <- function (g1, g2) {
dbar <- as.vector(colMeans(g1) - g2)
S1 <- cov(g1)
S2 <- var(g2)
n1 <- nrow(g1)
n2 <- length(g2)
V <- as.matrix((1/(n1 + n2 - 2)) * (((n1 - 1) * S1) + ((n2 -
1) * S2)))
D.sq <- t(dbar) %*% solve(V) %*% dbar
res <- list()
res$D.sq <- D.sq
res$V <- V
res
}
然而,这并没有给出你期望的答案:D.sq2(g1,g2)$D.sq
返回2.2469。
也许您可以将原始matlab
方法与这些详细信息进行比较,并找出差异的来源。快速浏览表明,差异在于如何计算V
中的分母。对我而言,这也可能是一个错误,但希望这会让你前进。