将指数修改过的高斯拟合到2D数据

时间:2019-01-22 18:19:35

标签: r curve-fitting gaussian

我正在尝试对R中的2D(x,y)数据拟合指数修正的高斯(如https://en.wikipedia.org/wiki/Exponentially_modified_Gaussian_distribution公式(1)中的那样)。

我的数据是:

x <- c(1.13669371604919, 1.14107275009155, 1.14545404911041, 1.14983117580414, 
1.15421032905579, 1.15859162807465, 1.16296875476837, 1.16734790802002, 
1.17172694206238, 1.17610621452332, 1.18048334121704, 1.18486452102661, 
1.18924164772034, 1.19362080097198, 1.19800209999084, 1.20237922668457, 
1.20675826072693, 1.21113955974579, 1.21551668643951, 1.21989583969116, 
1.22427713871002, 1.22865414619446, 1.2330334186554, 1.23741245269775, 
1.24178957939148, 1.24616885185242, 1.25055003166199, 1.25492715835571, 
1.25930631160736, 1.26368761062622, 1.26806473731995, 1.2724437713623
)
y <- c(42384.03125, 65262.62890625, 235535.828125, 758616, 1691651.75, 
    3956937.25, 8939261, 20311304, 41061724, 65143896, 72517440, 
    96397368, 93956264, 87773568, 82922064, 67289832, 52540768, 50410896, 
    35995212, 27459486, 14173627, 12645145, 10069048, 4290783.5, 
    2999174.5, 2759047.5, 1610762.625, 1514802, 958150.6875, 593638.6875, 
    368925.8125, 172826.921875)

我要调整的功能和为优化而要最小化的值:

EMGCurve <- function(x, par)
{
  ta <- 1/par[1]
  mu <- par[2]
  si <- par[3]
  h <- par[4]
  Fct.V <- (h * si / ta) * (pi/2)^0.5 * exp(0.5 * (si / ta)^2 - (x - mu)/ta)
  Fct.V
}

RMSE <- function(par)
{ 
  Fct.V <- EMGCurve(x,par)
  sqrt(sum((signal - Fct.V)^2)/length(signal))
}

result <- optim(c(1, x[which.max(y)], unname(quantile(x)[4]-quantile(x)[2]), max(y)), 
                lower = c(1, min(x), 0.0001, 0.1*max(y)),
                upper = c(Inf, max(x), 0.5*(max(x) - min(x)), max(y)),
                RMSE, method="L-BFGS-B", control=list(factr=1e7))

但是,当我最终试图对结果进行虚拟化时,似乎没有任何有用的事情发生,..

plot(x,y,xlab="RT/min",ylab="I")
lines(seq(min(x),max(x),length=1000),GaussCurve(seq(min(x),max(x),length=1000),result$par),col=2)

但是,由于某种原因,它根本不起作用,尽管可以用相似的代码进行正态分布。如果有人有想法会很棒吗?

1 个答案:

答案 0 :(得分:1)

如果可能有用,我可以使用X移位的对数正态类型峰方程对您的数据进行拟合,“ y = a * exp(-0.5 * pow((log(xd)-b )/ c,2.0))“,其中参数a = 9.4159743234392539E + 07,b = -2.7516932481669185E + 00,c = -2.4343893243720971E-01,并且d = 1.1251623071481867E + 00,得出R平方= 0.994和RMSE = 2.49 E06。我个人无法使用您帖子中的等式。当值看起来很大时,缩放从属数据可能会有所价值,但此等式似乎可以按原样拟合数据。 peak