未捕获(承诺)TypeError:t不是函数

时间:2019-01-22 11:11:24

标签: javascript tensorflow machine-learning artificial-intelligence

当我将Image添加到分类器中进行训练时,它将引发一些异常。我们正在使用ml5.js的Mobilenet模型,在该模型中,当我们调用train()方法时。

    let features =  ml5.featureExtractor('MobileNet');
    const classifier = features.classification();
    console.log("setup classifier DONE", classifier);

    var img2;
    console.log("adding images");
    const gorra = new Image();
    gorra.src = "https://ml5js.org/docs/assets/img/bird.jpg";
    gorra.width = 224;
    gorra.height = 224;
    console.log("adding images DONE", gorra);

    img2 = new Image();
    img2.src = "{!$Resource.cat}"
    img2.width = 224;
    img2.height = 224;
    console.log(img2);

    var img3;
    img3 = new Image();
    img3.src = "{!$Resource.car}"
    img3.width = 224;
    img3.height = 224;
    console.log(img3);
    console.log("setup classifier");

    var img4;
    img4 = new Image();
    img4.src = "{!$Resource.car1}"
    img4.width = 224;
    img4.height = 224;
    console.log(img4);

    console.log("setup classifier");
    console.log("adding example image...");
    const ex =  classifier.addImage(document.getElementById('imgshow'), "Gorra");
    console.log("adding ex image DONE!...", ex);
    const ex1 =  classifier.addImage(img2, "Gorra");
    console.log("adding ex1 image DONE!...", ex1);
    const ex2 =  classifier.addImage(img3, "car");
    console.log("adding ex1 image DONE!...", ex2);
    const ex3 =  classifier.addImage(img4, "car");
    console.log("adding ex1 image DONE!...", ex3);
    console.log('claasifier'+classifier);
    console.log("Training");
    // const trainer ;
    setTimeout(function(){ const trainer = classifier.train(); console.log("Training DONE", trainer);}, 30000);

在添加图片后,无论何时train()运行,它都会引发此错误 enter image description here 引用了Mobilnet.js库,我已突出显示了导致该错误的行 enter image description here

请告诉我,我们如何解决这个问题。

1 个答案:

答案 0 :(得分:0)

您需要为.train()函数提供回调。

根据ml5js的文档,.train()函数的回调不是是可选的。

您可以替换火车声明

const trainer = classifier.train();

带有以下代码。

const trainer = classifier.train(function(lossValue) {
  console.log('Loss is', lossValue)
});

这应该可以解决问题。