*请帮助它,这一点非常重要:为什么不能通过在for循环内使用HeatMap来获取Pandas datafram的柱状图的子图?
在迭代过程中,我尝试在for循环内的pandas数据框中创建列的子图,因为我为每个周期绘制结果,每个 480个值,以使所有3个子图都属于A, B,C在一个窗口中并排。我仅找到一个答案here,恐怕不是我的情况! @ euri10通过使用flat进行了回答。
我的脚本如下:
# Import and call the needed libraries
import numpy as np
import pandas as pd
import os
import seaborn as sns
import matplotlib.pyplot as plt
'''
Take a list and create the formatted matrix
'''
def mkdf(ListOf480Numbers):
normalMatrix = np.array_split(ListOf480Numbers,8) #Take a list and create 8 array (Sections)
fixMatrix = []
for i in range(8):
lines = np.array_split(normalMatrix[i],6) #Split each section in lines (each line contains 10 cells from 0-9)
newMatrix = [0,0,0,0,0,0] #Empty array to contain reordered lines
for j in (1,3,5):
newMatrix[j] = lines[j] #lines 1,3,5 remain equal
for j in (0,2,4):
newMatrix[j] = lines[j][::-1] #lines 2,4,6 are inverted
fixMatrix.append(newMatrix) #After last update of format of table inverted (bottom-up zig-zag)
return fixMatrix
'''
Print the matrix with the required format
'''
def print_df(fixMatrix):
values = []
for i in range(6):
values.append([*fixMatrix[4][i], *fixMatrix[7][i]]) #lines form section 6 and 7 are side by side
for i in range(6):
values.append([*fixMatrix[5][i], *fixMatrix[6][i]]) #lines form section 4 and 5 are side by side
for i in range(6):
values.append([*fixMatrix[1][i], *fixMatrix[2][i]]) #lines form section 2 and 3 are side by side
for i in range(6):
values.append([*fixMatrix[0][i], *fixMatrix[3][i]]) #lines form section 0 and 1 are side by side
df = pd.DataFrame(values)
return (df)
'''
Normalizing Formula
'''
def normalize(value, min_value, max_value, min_norm, max_norm):
new_value = ((max_norm - min_norm)*((value - min_value)/(max_value - min_value))) + min_norm
return new_value
'''
Split data in three different lists A, B and C
'''
dft = pd.read_csv('D:\me4.TXT', header=None)
id_set = dft[dft.index % 4 == 0].astype('int').values
A = dft[dft.index % 4 == 1].values
B = dft[dft.index % 4 == 2].values
C = dft[dft.index % 4 == 3].values
data = {'A': A[:,0], 'B': B[:,0], 'C': C[:,0]}
#df contains all the data
df = pd.DataFrame(data, columns=['A','B','C'], index = id_set[:,0])
'''
Data generation phase
'''
#next iteration create all plots, change the number of cycles
cycles = int(len(df)/480)
print(cycles)
for i in df:
try:
os.mkdir(i)
except:
pass
min_val = df[i].min()
min_nor = -1
max_val = df[i].max()
max_nor = 1
for cycle in range(1): #iterate thriugh all cycles range(1) by ====> range(int(len(df)/480))
count = '{:04}'.format(cycle)
j = cycle * 480
ordered_data = mkdf(df.iloc[j:j+480][i])
csv = print_df(ordered_data)
#Print .csv files contains matrix of each parameters by name of cycles respectively
csv.to_csv(f'{i}/{i}{count}.csv', header=None, index=None)
if 'C' in i:
min_nor = -40
max_nor = 150
#Applying normalization for C between [-40,+150]
new_value3 = normalize(df['C'].iloc[j:j+480][i].values, min_val, max_val, -40, 150)
n_cbar_kws = {"ticks":[-40,150,-20,0,25,50,75,100,125]}
df3 = print_df(mkdf(new_value3))
else:
#Applying normalizayion for A,B between [-1,+1]
new_value1 = normalize(df['A'].iloc[j:j+480][i].values, min_val, max_val, -1, 1)
new_value2 = normalize(df['B'].iloc[j:j+480][i].values, min_val, max_val, -1, 1)
n_cbar_kws = {"ticks":[-1.0,-0.75,-0.50,-0.25,0.00,0.25,0.50,0.75,1.0]}
df1 = print_df(mkdf(new_value1))
df2 = print_df(mkdf(new_value2))
#Plotting parameters by using HeatMap
plt.figure()
sns.heatmap(df, vmin=min_nor, vmax=max_nor, cmap ='coolwarm', cbar_kws=n_cbar_kws)
plt.title(i, fontsize=12, color='black', loc='left', style='italic')
plt.axis('off')
#Print .PNG images contains HeatMap plots of each parameters by name of cycles respectively
plt.savefig(f'{i}/{i}{count}.png')
#plotting all columns ['A','B','C'] in-one-window side by side
fig, axes = plt.subplots(nrows=1, ncols=3 , figsize=(20,10))
plt.subplot(131)
sns.heatmap(df1, vmin=-1, vmax=1, cmap ="coolwarm", linewidths=.75 , linecolor='black', cbar=True , cbar_kws={"ticks":[-1.0,-0.75,-0.5,-0.25,0.00,0.25,0.5,0.75,1.0]})
fig.axes[-1].set_ylabel('[MPa]', size=20) #cbar_kws={'label': 'Celsius'}
plt.title('A', fontsize=12, color='black', loc='left', style='italic')
plt.axis('off')
plt.subplot(132)
sns.heatmap(df2, vmin=-1, vmax=1, cmap ="coolwarm", cbar=True , cbar_kws={"ticks":[-1.0,-0.75,-0.5,-0.25,0.00,0.25,0.5,0.75,1.0]})
fig.axes[-1].set_ylabel('[Mpa]', size=20) #cbar_kws={'label': 'Celsius'}
#sns.despine(left=True)
plt.title('B', fontsize=12, color='black', loc='left', style='italic')
plt.axis('off')
plt.subplot(133)
sns.heatmap(df3, vmin=-40, vmax=150, cmap ="coolwarm" , cbar=True , cbar_kws={"ticks":[-40,150,-20,0,25,50,75,100,125]})
fig.axes[-1].set_ylabel('[°C]', size=20) #cbar_kws={'label': 'Celsius'}
#sns.despine(left=True)
plt.title('C', fontsize=12, color='black', loc='left', style='italic')
plt.axis('off')
plt.suptitle(f'Analysis of data in cycle Nr.: {count}', color='yellow', backgroundcolor='black', fontsize=48, fontweight='bold')
plt.subplots_adjust(top=0.7, bottom=0.3, left=0.05, right=0.95, hspace=0.2, wspace=0.2)
#plt.subplot_tool()
plt.savefig(f'{i}/{i}{i}{count}.png')
plt.show()
到目前为止,由于无法在每个周期内输出正确的输出,因此无法获得适当的输出,例如,以不同的间隔打印3次。它在左边和右边分别打印'A'
,然后再次在中间和右边的窗口中分别打印'A'
和'B'
的{{1}}。再次它打印'C'
3次而不是一次,放在中间,最后它打印'B'
3次而不是一次,放在右边,它放在中间和左边!
目标是为了在每个周期(每480个值)中捕获一个窗口中所有3列A,B和C的子图。 for循环中的480个值!)
第一个周期:A,B,C的0000 ----->子图---->将其存储为0000.png
第二个循环:0001 -----> A,B,C的子图---->将其存储为0001.png ...
问题是在for循环中使用 df ,它会在3秒钟内将A或B或C值传递 3 它的值分别属于一次的每一列。我提供了输出失败的图片here,以便您可以清楚地清楚地看到问题出在哪里
我想要的输出如下:
我还提供了3个周期的数据集示例文本文件:dataset
答案 0 :(得分:0)
因此,在查看了您的代码和要求之后,我想我知道问题出在哪里。
您的for
循环顺序错误。您需要每个循环一个新的图形,其中包含每个“ A”,“ B”和“ C”作为子图。
这意味着您的外部循环应遍历整个循环,然后您的内部循环应遍历i
,而循环的缩进和顺序使您尝试绘制所有在'A','B','C'
的第一个循环中的所有i
子图,而不是在第一个循环的第一个循环后绘制的所有{{1} }(i='A'
,cycle=1
)。
这也是为什么您遇到未定义df3的问题(如对this answer的评论中所述)。 df3的定义是在if块中检查是否i
,在您的第一个循环中,不满足此条件,因此未定义df3,但是您仍在尝试绘制它!
再次使用NaN / inf值,您遇到了与另一个问题相同的问题。
重新设置i='A','B','C'
循环和缩进并清除NaN / inf值将为您提供以下代码:
cycle=1
这将为您提供以下三个图像,分别是三个单独的数字以及您提供的数据:
通常来说,您的代码非常混乱。我明白了,如果您是编程新手,并且只想分析数据,那么您可以做任何有效的事情,无论它是否漂亮都可以。
但是,我认为凌乱的代码意味着您无法正确查看脚本的底层逻辑,这就是您遇到此问题的方式。
我建议您再次遇到类似问题时,在所有循环中写一些“伪代码”,并尝试考虑每个循环中要完成的工作。