如何在for循环内的一个窗口中对Pandas数据框中的列进行子图绘制

时间:2019-01-21 02:26:37

标签: python pandas dataframe matplotlib subplot

*请帮助它,这一点非常重要:为什么不能通过在for循环内使用HeatMap来获取Pandas datafram的柱状图的子图?

在迭代过程中,我尝试在for循环内的pandas数据框中创建列的子图,因为我为每个周期绘制结果,每个 480个值,以使所有3个子图都属于A, B,C在一个窗口中并排。我仅找到一个答案here,恐怕不是我的情况! @ euri10通过使用flat进行了回答。

我的脚本如下:

# Import and call the needed libraries
import numpy as np
import pandas as pd
import os
import seaborn as sns
import matplotlib.pyplot as plt


'''
Take a list and create the formatted matrix
'''
def mkdf(ListOf480Numbers):
    normalMatrix = np.array_split(ListOf480Numbers,8)     #Take a list and create 8 array (Sections)
    fixMatrix = []
    for i in range(8):
        lines = np.array_split(normalMatrix[i],6)         #Split each section in lines (each line contains 10 cells from 0-9)
        newMatrix = [0,0,0,0,0,0]                         #Empty array to contain reordered lines
        for j in (1,3,5):
            newMatrix[j] = lines[j]                       #lines 1,3,5 remain equal
        for j in (0,2,4):
            newMatrix[j] = lines[j][::-1]                 #lines 2,4,6 are inverted
        fixMatrix.append(newMatrix)                 #After last update of format of table inverted (bottom-up zig-zag)
    return fixMatrix

'''
Print the matrix with the required format
'''
def print_df(fixMatrix):
    values = []
    for i in range(6):
        values.append([*fixMatrix[4][i], *fixMatrix[7][i]])  #lines form section 6 and 7 are side by side
    for i in range(6):
        values.append([*fixMatrix[5][i], *fixMatrix[6][i]])  #lines form section 4 and 5 are side by side
    for i in range(6):
        values.append([*fixMatrix[1][i], *fixMatrix[2][i]])  #lines form section 2 and 3 are side by side
    for i in range(6):
        values.append([*fixMatrix[0][i], *fixMatrix[3][i]])  #lines form section 0 and 1 are side by side
    df = pd.DataFrame(values)
    return (df)

'''
Normalizing Formula
'''

def normalize(value, min_value, max_value, min_norm, max_norm):
    new_value = ((max_norm - min_norm)*((value - min_value)/(max_value - min_value))) + min_norm
    return new_value

'''
Split data in three different lists A, B and C
'''

dft = pd.read_csv('D:\me4.TXT', header=None)
id_set = dft[dft.index % 4 == 0].astype('int').values
A = dft[dft.index % 4 == 1].values
B = dft[dft.index % 4 == 2].values
C = dft[dft.index % 4 == 3].values
data = {'A': A[:,0], 'B': B[:,0], 'C': C[:,0]}
#df contains all the data
df = pd.DataFrame(data, columns=['A','B','C'], index = id_set[:,0])  


'''
Data generation phase

'''

#next iteration create all plots, change the number of cycles
cycles = int(len(df)/480)
print(cycles)
for i in df:
    try:
        os.mkdir(i)
    except:
        pass
    min_val = df[i].min()
    min_nor = -1
    max_val = df[i].max()
    max_nor = 1
    for cycle in range(1):             #iterate thriugh all cycles range(1) by ====> range(int(len(df)/480))
        count =  '{:04}'.format(cycle)
        j = cycle * 480
        ordered_data = mkdf(df.iloc[j:j+480][i])
        csv = print_df(ordered_data)
        #Print .csv files contains matrix of each parameters by name of cycles respectively
        csv.to_csv(f'{i}/{i}{count}.csv', header=None, index=None)            
        if 'C' in i:
            min_nor = -40
            max_nor = 150
            #Applying normalization for C between [-40,+150]
            new_value3 = normalize(df['C'].iloc[j:j+480][i].values, min_val, max_val, -40, 150)
            n_cbar_kws = {"ticks":[-40,150,-20,0,25,50,75,100,125]}
            df3 = print_df(mkdf(new_value3))
        else:
            #Applying normalizayion for A,B between    [-1,+1]
            new_value1 = normalize(df['A'].iloc[j:j+480][i].values, min_val, max_val, -1, 1)
            new_value2 = normalize(df['B'].iloc[j:j+480][i].values, min_val, max_val, -1, 1)
            n_cbar_kws = {"ticks":[-1.0,-0.75,-0.50,-0.25,0.00,0.25,0.50,0.75,1.0]}
        df1 = print_df(mkdf(new_value1))
        df2 = print_df(mkdf(new_value2))    

        #Plotting parameters by using HeatMap
        plt.figure()
        sns.heatmap(df, vmin=min_nor, vmax=max_nor, cmap ='coolwarm', cbar_kws=n_cbar_kws)                             
        plt.title(i, fontsize=12, color='black', loc='left', style='italic')
        plt.axis('off')
        #Print .PNG images contains HeatMap plots of each parameters by name of cycles respectively
        plt.savefig(f'{i}/{i}{count}.png')  



        #plotting all columns ['A','B','C'] in-one-window side by side


        fig, axes = plt.subplots(nrows=1, ncols=3 , figsize=(20,10))

        plt.subplot(131)
        sns.heatmap(df1, vmin=-1, vmax=1, cmap ="coolwarm", linewidths=.75 , linecolor='black', cbar=True , cbar_kws={"ticks":[-1.0,-0.75,-0.5,-0.25,0.00,0.25,0.5,0.75,1.0]})
        fig.axes[-1].set_ylabel('[MPa]', size=20) #cbar_kws={'label': 'Celsius'}
        plt.title('A', fontsize=12, color='black', loc='left', style='italic')
        plt.axis('off')

        plt.subplot(132)
        sns.heatmap(df2, vmin=-1, vmax=1, cmap ="coolwarm", cbar=True , cbar_kws={"ticks":[-1.0,-0.75,-0.5,-0.25,0.00,0.25,0.5,0.75,1.0]})
        fig.axes[-1].set_ylabel('[Mpa]', size=20) #cbar_kws={'label': 'Celsius'}
        #sns.despine(left=True)
        plt.title('B', fontsize=12, color='black', loc='left', style='italic')
        plt.axis('off')

        plt.subplot(133)
        sns.heatmap(df3, vmin=-40, vmax=150, cmap ="coolwarm" , cbar=True , cbar_kws={"ticks":[-40,150,-20,0,25,50,75,100,125]}) 
        fig.axes[-1].set_ylabel('[°C]', size=20) #cbar_kws={'label': 'Celsius'}
        #sns.despine(left=True)
        plt.title('C', fontsize=12, color='black', loc='left', style='italic')
        plt.axis('off')


        plt.suptitle(f'Analysis of data in cycle Nr.: {count}', color='yellow', backgroundcolor='black', fontsize=48, fontweight='bold')
        plt.subplots_adjust(top=0.7, bottom=0.3, left=0.05, right=0.95, hspace=0.2, wspace=0.2)
        #plt.subplot_tool()
        plt.savefig(f'{i}/{i}{i}{count}.png') 
        plt.show()

到目前为止,由于无法在每个周期内输出正确的输出,因此无法获得适当的输出,例如,以不同的间隔打印3次。它在左边和右边分别打印'A',然后再次在中间和右边的窗口中分别打印'A''B'的{​​{1}}。再次它打印'C' 3次而不是一次,放在中间,最后它打印'B' 3次而不是一次,放在右边,它放在中间和左边!

目标是为了在每个周期(每480个值)中捕获一个窗口中所有3列A,B和C的子图。 for循环中的480个值!)

第一个周期:A,B,C的0000 ----->子图---->将其存储为0000.png

第二个循环:0001 -----> A,B,C的子图---->将其存储为0001.png ...

问题是在for循环中使用 df ,它会在3秒钟内将A或B或C值传递 3 它的值分别属于一次的每一列。我提供了输出失败的图片here,以便您可以清楚地清楚地看到问题出在哪里

我想要的输出如下:

picture

我还提供了3个周期的数据集示例文本文件:dataset

1 个答案:

答案 0 :(得分:0)

因此,在查看了您的代码和要求之后,我想我知道问题出在哪里。 您的for循环顺序错误。您需要每个循环一个新的图形,其中包含每个“ A”,“ B”和“ C”作为子图。

这意味着您的外部循环应遍历整个循环,然后您的内部循环应遍历i,而循环的缩进和顺序使您尝试绘制所有在'A','B','C'的第一个循环中的所有i子图,而不是在第一个循环的第一个循环后绘制的所有{{1} }(i='A'cycle=1)。

这也是为什么您遇到未定义df3的问题(如对this answer的评论中所述)。 df3的定义是在if块中检查是否i,在您的第一个循环中,不满足此条件,因此未定义df3,但是您仍在尝试绘制它!

再次使用NaN / inf值,您遇到了与另一个问题相同的问题。

重新设置i='A','B','C'循环和缩进并清除NaN / inf值将为您提供以下代码:

cycle=1

这将为您提供以下三个图像,分别是三个单独的数字以及您提供的数据:

Figure 1Figure 2Figure 3

通常来说,您的代码非常混乱。我明白了,如果您是编程新手,并且只想分析数据,那么您可以做任何有效的事情,无论它是否漂亮都可以。

但是,我认为凌乱的代码意味着您无法正确查看脚本的底层逻辑,这就是您遇到此问题的方式。

我建议您再次遇到类似问题时,在所有循环中写一些“伪代码”,并尝试考虑每个循环中要完成的工作。