假设我有这个数据框:
df = pd.DataFrame({'col1': [1, 2, 3, 4, 5],
'col2': [7, 45, 12, 56, 14],
'col3': [56, 67, 8, 12, 39],
'col4': [16, np.nan, 25, 6, 19],
'col5': [1, 9, 23, 56, np.nan],
'col6': [13, 3, 53, 72, 88]})
我只想计算此数据帧的偶数列和奇数列的均值。我已经尝试过以下代码:
df['avg_odd'] = df[[df.columns[0],df.columns[2],df.columns[4]]].mean(axis=1)
df['avg_even'] = df[[df.columns[1],df.columns[3],df.columns[5]]].mean(axis=1)
但是有什么办法可以更快地做到吗?如果我有100列或更多列,应该如何计算?
答案 0 :(得分:5)
使用 69%] Linking CXX shared library libTsmToLfsResponseEncoderd.so
[ 92%] Built target TsmToLfsResponseEncoder
[100%] Linking CXX executable LFsToTsm-externalEntity-test
../.../libTsmToLfsResponseEncoderd.so: undefined reference to `converter::tsmToLfsResponseEncoder::EntityDecoder::buffer'
}
和%
groupby
df[['avg_odd', 'avg_even']] = df.groupby(np.arange(df.shape[1]) % 2, axis=1).mean()
答案 1 :(得分:3)
按模数长度按列长度创建帮助程序并创建新列:
arr = np.arange(len(df.columns)) % 2
df['avg_odd'] = df.iloc[:, arr == 0].mean(axis=1)
df['avg_even'] = df.iloc[:, arr == 1].mean(axis=1)
print (df)
col1 col2 col3 col4 col5 col6 avg_odd avg_even
0 1 7 56 16.0 1.0 13 19.333333 12.000000
1 2 45 67 NaN 9.0 3 26.000000 24.000000
2 3 12 8 25.0 23.0 53 11.333333 30.000000
3 4 56 12 6.0 56.0 72 24.000000 44.666667
4 5 14 39 19.0 NaN 88 22.000000 40.333333
答案 2 :(得分:3)
df = df.assign(avg_even = df[df.columns[::2]].mean(axis=1),
avg_odd = df[df.columns[1::2]].mean(axis=1))
简单直接