我正在尝试将数据从YAML文件获取到Pandas DataFrame中。以下面的示例data.yml
:
---
- doc: "Book1"
reviews:
- reviewer: "Paul"
stars: "5"
- reviewer: "Sam"
stars: "2"
- doc: "Book2"
reviews:
- reviewer: "John"
stars: "4"
- reviewer: "Sam"
stars: "3"
- reviewer: "Pete"
stars: "2"
...
所需的DataFrame看起来像这样:
doc reviews.reviewer reviews.stars
0 Book1 Paul 5
1 Book1 Sam 2
2 Book2 John 4
3 Book2 Sam 3
4 Book2 Pete 2
我尝试过将YAML数据以不同的方式(例如with open('data.yml') as f: data = pd.DataFrame(yaml.load(f))
)馈送到Pandas,但是单元格始终包含嵌套的字典。这个solution works for general JSON data,但其中有很多代码,而且似乎存在针对YAML的更简单解决方案。
是否存在内置或Pythonic的方法来对YAML进行非规范化以转换为Pandas Dataframe?
答案 0 :(得分:2)
现在使用上面会导致 FutureWarning:pandas.io.json.json_normalize 已弃用,请改用 pandas.json_normalize
# lets say the yaml file is test_sample.yml
from pandas import json_normalize
from os import getcwd, path
from yaml import SafeLoader, load
path_to_yaml = path.join(getcwd(), ..., "test_sample.yaml")
with open(path_to_yaml) as yaml_file:
yaml_contents = load(path_to_file, Loader=SafeLoader)
yaml_df = json_normalize(yaml_contents)
答案 1 :(得分:1)
YAML加载后,您应该使用json_normalize
来使词典变平:
pd.io.json.json_normalize(yaml.load(f), 'reviews', 'doc')
reviewer stars doc
0 Paul 5 Book1
1 Sam 2 Book1
2 John 4 Book2
3 Sam 3 Book2
4 Pete 2 Book2