我正在实现具有多层双向rnn和关注机制的Seq2Seq模型,在遵循本教程https://github.com/tensorflow/nmt时,我对如何正确操纵双向层之后的encoder_state感到困惑。
引用本教程“对于多个双向层,我们需要稍微操纵编码器状态,有关更多详细信息,请参见model.py,方法_build_bidirectional_rnn()。”这是代码的相关部分(https://github.com/tensorflow/nmt/blob/master/nmt/model.py第770行):
encoder_outputs, bi_encoder_state = (
self._build_bidirectional_rnn(
inputs=self.encoder_emb_inp,
sequence_length=sequence_length,
dtype=dtype,
hparams=hparams,
num_bi_layers=num_bi_layers,
num_bi_residual_layers=num_bi_residual_layers))
if num_bi_layers == 1:
encoder_state = bi_encoder_state
else:
# alternatively concat forward and backward states
encoder_state = []
for layer_id in range(num_bi_layers):
encoder_state.append(bi_encoder_state[0][layer_id]) # forward
encoder_state.append(bi_encoder_state[1][layer_id]) # backward
encoder_state = tuple(encoder_state)
这就是我现在拥有的:
def get_a_cell(lstm_size):
lstm = tf.nn.rnn_cell.BasicLSTMCell(lstm_size)
#drop = tf.nn.rnn_cell.DropoutWrapper(lstm,
output_keep_prob=keep_prob)
return lstm
encoder_FW = tf.nn.rnn_cell.MultiRNNCell(
[get_a_cell(num_units) for _ in range(num_layers)])
encoder_BW = tf.nn.rnn_cell.MultiRNNCell(
[get_a_cell(num_units) for _ in range(num_layers)])
bi_outputs, bi_encoder_state = tf.nn.bidirectional_dynamic_rnn(
encoder_FW, encoder_BW, encoderInput,
sequence_length=x_lengths, dtype=tf.float32)
encoder_output = tf.concat(bi_outputs, -1)
encoder_state = []
for layer_id in range(num_layers):
encoder_state.append(bi_encoder_state[0][layer_id]) # forward
encoder_state.append(bi_encoder_state[1][layer_id]) # backward
encoder_state = tuple(encoder_state)
#DECODER -------------------
decoder_cell = tf.nn.rnn_cell.MultiRNNCell([get_a_cell(num_units) for _ in range(num_layers)])
# Create an attention mechanism
attention_mechanism = tf.contrib.seq2seq.LuongAttention(num_units_attention, encoder_output ,memory_sequence_length=x_lengths)
decoder_cell = tf.contrib.seq2seq.AttentionWrapper(
decoder_cell,attention_mechanism,
attention_layer_size=num_units_attention)
decoder_initial_state = decoder_cell.zero_state(batch_size,tf.float32)
.clone(cell_state=encoder_state)
问题是我收到错误消息
The two structures don't have the same nested structure.
First structure: type=AttentionWrapperState
str=AttentionWrapperState(cell_state=(LSTMStateTuple(c=, h=),
LSTMStateTuple(c=, h=)), attention=, time=, alignments=, alignment_history=
(), attention_state=)
Second structure: type=AttentionWrapperState
str=AttentionWrapperState(cell_state=(LSTMStateTuple(c=, h=),
LSTMStateTuple(c=, h=), LSTMStateTuple(c=, h=), LSTMStateTuple(c=, h=)),
attention=, time=, alignments=, alignment_history=(), attention_state=)
这对我来说很有意义,因为我们不包括所有输出层,而是(我想)仅包括最后一层。虽然对于状态,我们实际上是在连接所有层。
因此,正如我所期望的,仅当连接最后一层状态时,如下所示:
encoder_state = []
encoder_state.append(bi_encoder_state[0][num_layers-1]) # forward
encoder_state.append(bi_encoder_state[1][num_layers-1]) # backward
encoder_state = tuple(encoder_state)
它运行无误。
据我所知,没有代码的任何部分在将编码器状态传递给关注层之前,它们会再次对其进行转换。那么他们的代码如何工作?更重要的是,我的解决方案是否破坏了注意机制的正确行为?
答案 0 :(得分:0)
只有编码器是双向的,但您给解码器提供了双向状态(始终是单向的)。
您要做的只是简单地连接状态,因此,您可以再次操纵“单向数据”!
encoder_state = []
for layer_id in range(num_layers):
state_fw = bi_encoder_state[0][layer_id]
state_bw = bi_encoder_state[1][layer_id]
# Merging the fw state and the bw state
cell_state = tf.concat([state_fw.c, state_bw.c], 1)
hidden_state= tf.concat([state_fw.h, state_bw.h], 1)
# This state as the same structure than an uni-directional encoder state
state = tf.nn.rnn_cell.LSTMStateTuple(c=cell_state, h=hidden_state)
encoder_state.append(state)
encoder_state = tuple(encoder_state)