我有以下内容:
df1 = pd.DataFrame({'Effective_Date':pd.to_datetime(['12/31/2017', '1/31/2018', '2/28/2018', '3/31/2018', '9/30/2020']),
'Amount':[100,150,300,500,750]})
Date_Range = pd.date_range('12/31/2017', periods=150, freq='M')
我正在尝试创建一个单个数据框,当df1 ['Effective_Date']的月份= Date_Range的月份时,该数据帧返回df1 ['Amount']。但是,如果Date_Range为 例如,有效日期为1/31/19且金额为5时,对于Date_Range = 1/31 / 19、1 / 31 / 20、1 / 31/21等,将有5个,在其他所有地方都为0。 我可以分别做两件事: 如果月份相等: 如果Date_Range <生效日期,则返回0: 但是我不确定如何将两者结合起来。感谢您的帮助。 df2 = (pd.DataFrame(np.equal.outer(df1.Effective_Date.dt.month, Date_Range.month) * df1.Amount.values[:,None], columns = Date_Range))
df3 = (pd.DataFrame(np.less_equal.outer(df1.Effective_Date, Date_Range) * df1['Amount'].values[:,None], columns = Date_Range))
答案 0 :(得分:1)
我相信您需要numpy.where
:
a = np.equal.outer(df1.Effective_Date.dt.month, Date_Range.month) * df1.Amount.values[:,None]
b = np.less_equal.outer(df1.Effective_Date, Date_Range) * df1['Amount'].values[:,None]
m = Date_Range.values < df1['Effective_Date'].values[:,None]
df = pd.DataFrame(np.where(m, a, b), columns = Date_Range)
print (df)
2017-12-31 2018-01-31 2018-02-28 2018-03-31 2018-04-30 2018-05-31 \
0 100 100 100 100 100 100
1 0 150 150 150 150 150
2 0 0 300 300 300 300
3 0 0 0 500 500 500
4 0 0 0 0 0 0
2029-12-31 2030-01-31 2030-02-28 2030-03-31 2030-04-30 \
0 ... 100 100 100 100 100
1 ... 150 150 150 150 150
2 ... 300 300 300 300 300
3 ... 500 500 500 500 500
4 ... 750 750 750 750 750
2030-05-31
0 100
1 150
2 300
3 500
4 750
[5 rows x 150 columns]