如何使用Tensorflow API检测对象而无需每次都下载模型?

时间:2019-01-17 07:30:09

标签: python-3.x opencv tensorflow object-detection

我正在使用tensorflow对象检测API来检测对象。在我的Windows系统中运行正常。 示例代码object_detection_tutorial.ipynb每次都必须下载模型。 我必须对代码进行哪些更改,以便可以加载已经下载的模型? 预先感谢

我尝试了以下代码

改编自Tensorflow对象检测框架的代码 https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb

Tensorflow对象检测检测器

import numpy as np
import tensorflow as tf
import cv2
import time


class DetectorAPI:
    def __init__(self, path_to_ckpt):
        self.path_to_ckpt = path_to_ckpt

        self.detection_graph = tf.Graph()
        with self.detection_graph.as_default():
            od_graph_def = tf.GraphDef()
            with tf.gfile.GFile(self.path_to_ckpt, 'rb') as fid:
                serialized_graph = fid.read()
                od_graph_def.ParseFromString(serialized_graph)
                tf.import_graph_def(od_graph_def, name='')

        self.default_graph = self.detection_graph.as_default()
        self.sess = tf.Session(graph=self.detection_graph)

        # Definite input and output Tensors for detection_graph
        self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
        # Each box represents a part of the image where a particular object was detected.
        self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
        # Each score represent how level of confidence for each of the objects.
        # Score is shown on the result image, together with the class label.
        self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0')
        self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
        self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')

    def processFrame(self, image):
        # Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3]
        image_np_expanded = np.expand_dims(image, axis=0)
        # Actual detection.
        start_time = time.time()
        (boxes, scores, classes, num) = self.sess.run(
            [self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections],
            feed_dict={self.image_tensor: image_np_expanded})
        end_time = time.time()

        print("Elapsed Time:", end_time-start_time)

        im_height, im_width,_ = image.shape
        boxes_list = [None for i in range(boxes.shape[1])]
        for i in range(boxes.shape[1]):
            boxes_list[i] = (int(boxes[0,i,0] * im_height),
                        int(boxes[0,i,1]*im_width),
                        int(boxes[0,i,2] * im_height),
                        int(boxes[0,i,3]*im_width))

        return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0])

    def close(self):
        self.sess.close()
        self.default_graph.close()

    if __name__ == "__main__":
        model_path ='C:\\Users\HP\Downloads\models\research\object_detection\faster_rcnn_inception_v2_coco_2018_01_28\frozen_inference_graph.pb'
        odapi = DetectorAPI(path_to_ckpt=model_path)
        threshold = 0.7
        cap = cv2.VideoCapture(0)

        while True:
            r, img = cap.read()
            img = cv2.resize(img, (1280, 720))

            boxes, scores, classes, num = odapi.processFrame(img)

            # Visualization of the results of a detection.

            for i in range(len(boxes)):
                # Class 1 represents human
                if classes[i] == 1 and scores[i] > threshold:
                    box = boxes[i]
                    cv2.rectangle(img,(box[1],box[0]),(box[3],box[2]),(255,0,0),2)

            cv2.imshow("preview", img)
            key = cv2.waitKey(1)
            if key & 0xFF == ord('q'):
                break

我正在使用 Python 3.5.2 Tensorflow 1.11.0 的opencv 4.0.0 我收到此错误:

Traceback (most recent call last):
  File "C:\Users\HP\Downloads\models\research\object_detection\tensorflow-human-detection.py", line 64, in <module>
    odapi = DetectorAPI(path_to_ckpt=model_path)
  File "C:\Users\HP\Downloads\models\research\object_detection\tensorflow-human-detection.py", line 19, in __init__
    serialized_graph = fid.read()
  File "C:\Users\HP\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\lib\io\file_io.py", line 125, in read
    self._preread_check()
  File "C:\Users\HP\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\lib\io\file_io.py", line 85, in _preread_check
    compat.as_bytes(self.__name), 1024 * 512, status)
  File "C:\Users\HP\AppData\Local\Programs\Python\Python35\lib\site-packages\tensorflow\python\framework\errors_impl.py", line 526, in __exit__
    c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: NewRandomAccessFile failed to Create/Open: C:\Users\HP\Downloads\models
esearch\object_detectionaster_rcnn_inception_v2_coco_2018_01_28rozen_inference_graph.pb : The filename, directory name, or volume label syntax is incorrect.

; Unknown error

0 个答案:

没有答案