根据其频率对数组元素进行排序

时间:2019-01-16 10:18:43

标签: ios arrays swift sorting time-complexity

我需要根据元素的频率对元素数组进行排序,例如:

Input array: [1, 6, 6, 6, 6, 4, 3, 5, 5, 5, 2, 2]
Expected output: [1, 3, 4, 2, 2, 5, 5, 5, 6, 6, 6, 6]

我尝试了以下代码:

var set: NSCountedSet = [1, 6, 6, 6, 6, 4, 3, 5, 5, 5, 2, 2]

var dictionary = [Int: Int]()
set.forEach { (item) in
    dictionary[item as! Int] = set.count(for: item)
}
dictionary.keys.sorted()
print(dictionary)

说明:由于1、3、4仅出现一次,因此它们显示在开头,其中2次出现两次,5次出现3次,6次出现4次。并且[1、3、4]在其中排序。

预期结果:时间复杂度应为 O(n)

8 个答案:

答案 0 :(得分:6)

首先创建一个包含每个元素(O(nlogn))出现次数的Dictionary,然后在{上调用O(n) {1}}(Swift uses Introsort,即sorted),并使用先前创建的Array中的值进行排序。数组的元素需要O(nlogn)才能正常工作,Dictionary才能存储在Comparable中,Hashable可以提供Dictionary元素查找。

O(1)

以上解决方案保留了出现次数相同的元素的顺序。如果您实际上想根据这些元素的比较值对它们进行排序(这就是示例输出的结果),则可以像下面这样在extension Array where Element: Comparable & Hashable { func sortByNumberOfOccurences() -> [Element] { let occurencesDict = self.reduce(into: [Element:Int](), { currentResult, element in currentResult[element, default: 0] += 1 }) return self.sorted(by: { current, next in occurencesDict[current]! < occurencesDict[next]!}) } } [1, 6, 6, 6, 6, 4, 3, 5, 5, 5, 2, 2].sortByNumberOfOccurences() // [1, 4, 3, 2, 2, 5, 5, 5, 6, 6, 6, 6] 中修改闭包:

sorted

或更短的comparing tuples for sorting

return self.sorted(by: {occurencesDict[$0]! <= occurencesDict[$1]! && $0 < $1})

生成您提供的示例输出return self.sorted(by: {(occurencesDict[$0]!,$0) < (occurencesDict[$1]!,$1)})

答案 1 :(得分:3)

您可以尝试

let dd = [1, 6, 6, 6, 6, 4, 3, 5, 5, 5, 2, 2]
let res = dd.sorted { f, s in
    dd.filter { $0 == f }.count <   dd.filter { $0 == s }.count 
} 
print(res) // [1, 4, 3, 2, 2, 5, 5, 5, 6, 6, 6, 6]

答案 2 :(得分:2)

没有办法以O(n)时间复杂度进行排序。在Wikipedia.

处查看流行算法的最坏情况复杂度

最坏情况下的时间复杂度是O(nlogn)。这是我们可以用O(nlogn)时间复杂度解决的方法:


    let array = [1, 6, 6, 6, 6, 4, 3, 5, 5, 5, 2, 2]

    extension Array where Element: Comparable & Hashable {
        func countableSorted() -> [Element] {
            var counts = [Element: Int]()
            // O(n)
            for element in self {
                counts[element] = (counts[element] ?? 0) + 1
            }

            // I think that standart method uses O(nlogn) time complexity.
            // O(nlogn) + O(n) approximately equal to O(nlogn).
            let sorted = counts.sorted { item1, item2 -> Bool in
                if item2.value > item1.value {
                    return true
                }

                if item2.value == item1.value {
                    return item2.key > item1.key
                }

                return false
            }

            var result = [Element]()
            // O(n)
            for item in sorted {
                let items = Array(repeating: item.key, count: item.value)
                result.append(contentsOf: items)
            }

            // Total time complexity for worst case scenario is O(nlogn)

            return result
        }
    }

    print(array.countableSorted())

    // Output: [1, 3, 4, 2, 2, 5, 5, 5, 6, 6, 6, 6]

答案 3 :(得分:1)

var inputArray = [1, 6, 6, 6, 6, 4, 3, 5, 5, 5, 2, 2]
var map:[Int: Int] = [:]
for element in inputArray {
    let count = map[element]
    if count == nil {
        map[element] = 1
    } else {
        map[element] = count! + 1
    }
}
var keysArray = map.keys
let sortedKeys = keysArray.sorted { (number1, number2) -> Bool in
    if map[number1]! == map[number2]! {
        return number1 < number2
    } else {
        return map[number1]! < map[number2]!
    }
}
var finalArray: [Int] = []
for element in sortedKeys {
    for _ in 1...map[element]! {
        finalArray.append(element)
    }
}
print(finalArray)

时间复杂度:O(nlogn)

答案 4 :(得分:1)

您可以尝试以下代码,此方法正常工作。

var inputArray = [1, 6, 6, 6, 6, 4, 3, 5, 5, 5, 2, 2]
inputArray.sort()
let freq = inputArray.sorted { f, s in
    inputArray.filter { $0 == f}.count < inputArray.filter { $0 == s}.count
}
print(freq)

不确定时间的复杂性。

答案 5 :(得分:1)

我想在O(n)

中添加一个解决方案

排序需要O(nLogn),但是无需使用Java中的HashMap进行排序就可以解决此问题,因为它包含根据键排序的对。

import java.util.*; 

class Simple 
{ 
    public static void main(String[] arg) 
    {  int inputArray[] = {1, 6, 6, 6, 6, 4, 3, 5, 5, 5, 2, 2};
        Map<Integer,Integer> map = new HashMap<Integer,Integer>(); 
        Map<Integer,List<Integer>> map2 = new HashMap<Integer,List<Integer>>();
       for(int i: inputArray)
      {
                  if(map.get(i) == null){
                 map.put(i, 1) ;
                  }
                  else{
                  int a = map.get(i);
                  map.put(i,a+1);
                 }
      }

        // using for-each loop for iteration over Map.entrySet() 
        for (Map.Entry<Integer,Integer> entry : map.entrySet()) {
            if(map2.get(entry.getValue()) == null){
                map2.put(entry.getValue(), new ArrayList<Integer>()) ;
            }
            map2.get(entry.getValue()).add(entry.getKey());
        }

        for(Map.Entry<Integer,List<Integer>> entry : map2.entrySet()){
            for(int j=0; j<entry.getValue().size(); j++){
                for(int i=0; i<entry.getKey(); i++){
                System.out.print(entry.getValue().get(j) + " ");
            }
            }

        }    
    }         

}
  1. 在First for循环中,我遍历数组对对(值,出现次数)保存在map1(HashMap)中。 HashMap放置操作(插入)需要O(1),因此将需要O(n)。
  2. 在第二个for循环中,我迭代map1并在map2(HashMap2)中插入一对(出现次数,给定数组中出现该事件的数字列表)
  3. 现在在上一个for循环中,我遍历map2并逐个打印所有列表,这意味着我要一次打印给定数组的每个元素,即我遍历每个键的列表并打印列表的每个元素< strong> key 次。因此,这也需要O(n)。

more about HashMap 时间复杂度:O(n)

上述代码的快速版本

extension Array where Element: Comparable & Hashable {
func sortByNumberOfOccurences() -> [Element] {
    let occurencesDict = self.reduce(into: [Element:Int](), { currentResult, element in
        currentResult[element, default: 0] += 1
    })
    let dict = occurencesDict.sorted(by: {$0.0 < $1.0})
    var dictioanary = [Int:Array]()
    for (element,occurence) in dict {
        if dictioanary[occurence] == nil
        {
            dictioanary[occurence] = Array()
        }
        dictioanary[occurence]?.append(element)
    }


    var resultArray = Array()
    let finalDict = dictioanary.sorted(by: {$0.0  < $1.0})
    for (frequency,allValuesOccuringWithThisFrequncy) in finalDict {
       for i in allValuesOccuringWithThisFrequncy
       {
        var j = 0
        while(j < frequency)
        {
            resultArray.append(i)
            j = j + 1
        }
       }
    }
    print(resultArray)
    return resultArray
}

}

Swift O(nLogn)中的时间复杂度

答案 6 :(得分:0)

尝试此解决方案。它对我来说就像一种魅力:)

func numberOfOccurences(in array: [Int], of element: Int) -> Int {
    let object = NSCountedSet(array: array)
    return object.count(for: element)
}

var inputArray = [1, 6, 6, 6, 6, 4, 3, 5, 5, 5, 2, 2]

var uniqueElements = Array(Set(inputArray))

var otherArray: [Int] = []

var duplicateElements = uniqueElements.filter { (element) -> Bool in
    return (inputArray.contains(element) && numberOfOccurences(in: inputArray, of: element) > 1)
}

uniqueElements = uniqueElements.filter({ !duplicateElements.contains($0) }).sorted()

for item in duplicateElements {
    let occurences = numberOfOccurences(in: inputArray, of: item)
    for _ in 0...occurences - 1 {
        otherArray.append(item)
    }
}

otherArray = otherArray.sorted()

duplicateElements.removeAll()

let mergedArray = uniqueElements + otherArray

print(mergedArray)

答案 7 :(得分:0)

我认为这种排序可以在O(n)中实现,如下所示:

let input = [1, 6, 6, 6, 6, 4, 3, 5, 5, 5, 2, 2]

// build the frequency dictionary (easy task)
let frequencies = input.reduce(into: [:]) { $0[$1] = ($0[$1] ?? 0) + 1 }

// allocate a 2-D array of ints, each item in this array will hold the numbers that
// appear I times in the input array
let frequencyTable: [[Int]] = frequencies.reduce(into: Array(repeating: [Int](), count: input.count)) {
    // substracting one as arrays are zero indexed
    // we can't get of of bounds here since the maximum frequency is the 
    // number of elements in the input array
    // Also replicating the numbers by their frequency, to have
    // the same contents as in the input array
    $0[$1.value - 1] += Array(repeating: $1.key, count: $1.value)
}

// lastly, simply flatten the 2-D array to get the output we need
let output = frequencyTable.flatMap { $0 }

print(output)

抽样结果:

[4, 1, 3, 2, 2, 5, 5, 5, 6, 6, 6, 6]

请注意,根据字典哈希函数的工作方式,具有相同频率的数字顺序可能会有所不同。

我们也为了时间而牺牲了空间(分配的二维数组)。

frequencyTable的内容与此类似(同样,1、4、3的顺序可能不同):

[[4, 3, 1], [2, 2], [5, 5, 5], [6, 6, 6, 6], [], [], [], [], [], [], [], []]