我尝试使用此代码。输出为:Categorical(probs: torch.Size([12])))
。我想从输出中提取值并将其转换为numpy
数组。有人可以提出建议吗?
我知道我可以返回a的值(已注释)。但是,仍然有解决方案吗?
class Actor(nn.Module):
def __init__(self, state_size, action_size):
super(Actor, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.linear1 = nn.Linear(self.state_size, 128)
self.linear2 = nn.Linear(128, 256)
self.linear3 = nn.Linear(256, self.action_size)
def forward(self, state):
output = F.relu(self.linear1(state))
output = F.relu(self.linear2(output))
output = self.linear3(output)
distribution = Categorical(F.softmax(output, dim=-1))
# a=F.softmax(output, dim=-1)
# print(a.detach().numpy())
return distribution
output=Actor(state)
print(output)
答案 0 :(得分:0)
怎么样
prob = output.probs.detach().cpu().numpy()