以八度为单位进行明确的4D集成,功能为极限

时间:2019-01-14 12:59:01

标签: matlab octave integral calculus

我需要以八度为单位进行4D集成。 我的函数是f(x,y,phi,theta),某些积分极限是外部极限的函数。

0 < theta < pi
t1(x,y) < phi < t2(x,y)
h1 < y < h2
w1 < x < w2

我这样写成八度(概括):

[q1(i)] = integral( @(x) (integral3( @(y, phi, theta) f3(x, y, phi, theta), h1 , h2 , @(x,y) t1(x,y), @(x,y) t2(x,y), 0, pi)), w1, w2, 'ArrayValued',true);

我的实际代码:

clear all;
clc;
rho_bulk = 2.44; # rho_bulk = 2.44 uOhm.cm
h = 20e-9;
p = 0.5;
lambda = 40e-9;
n = 10;
w = linspace(20e-9,80e-9,n);

  for i = 1:n
  # limit for theta
  p2    = pi;
  p1    = 0;

  # limit for phi
  p4    = @(x,y) atan(x/(h-y)) + (pi/2);
  p3    = @(x,y) -atan((h-y)/(w(i)-x));

  # limit for y
  p6    = h;
  p5    = 0;

  # limit for x
  p8(i) = w(i);
  p7    = 0;

  #   f(x, y, phi, theta); outer --> inner
  #   limits;              inner --> outer

  f1 = @(x, y, phi, theta) exp(-(h-y)/(lambda *sin(theta) *sin(phi)));  
  f3 = @(x, y, phi, theta) sin(theta).*cos(theta).^2 .* f1(x, y, phi, theta);

  [q1(i)] = integral( @(x) (integral3( @(y, phi, theta) f3(x, y, phi, theta), p5, p6, @(x,y) p3(x,y), @(x,y) p4(x,y), p1, p2)), p7, p8(i), 'ArrayValued',true);

我在集成行中遇到错误

error: 'y' undefined near line 51 column 98

我通过以下这些知识了解了集成:

https://www.mathworks.com/matlabcentral/answers/77571-how-to-perform-4d-integral-in-matlab

Quadruple Integral Using Nested Integral2 in Matlab

1 个答案:

答案 0 :(得分:0)

我认为问题在于您对integral3的调用中的限制定义:

integral3( @(y, phi, theta) f3(x, y, phi, theta), p5, p6, @(x,y) p3(x,y), @(x,y) p4(x,y), p1, p2)

您正在尝试将yphitheta到{{1}的p5p6p3(x,y)中集成}和p4(x,y)p1p2允许使用函数值限制,但only in a very specific way

integrate3

这实际上反映了整合将如何在纸上进行。所以你拥有的是:

q = integral3 (f, xa, xb, ya, yb, za, zb, prop, val, …)

    Numerically evaluate the three-dimensional integral of f using adaptive quadrature
    over the three-dimensional domain defined by xa,
    xb, ya, yb, za, zb (scalars may be finite or infinite). Additionally,
    ya and yb may be scalar functions of x and za, and zb maybe be scalar
    functions of x and y, allowing for integration over non-rectangular
    domains.

您的第二个限制尝试依赖于两个变量,而它们可能仅取决于一个变量:第一个积分变量。但这很好,因为p5, p6, @(x,y) p3(x,y), @(x,y) p4(x,y), p1, p2 不是集成变量,它只是一个参数。因此,我认为以下方法应该有效:

x

通过将限制定义为单值函数,我们基本上curry您的integral3(@(y, phi, theta) f3(x, y, phi, theta), p5, p6, @(y) p3(x,y), @(y) p4(x,y), p1, p2) p3函数具有依赖于p4积分变量的单值函数