我已经完成了AWS基本事实的标签工作,并开始研究用于对象检测的笔记本模板。
我有2个清单,其中有293个标记的鸟在火车上的图像,并具有以下验证集:
{"source-ref":"s3://XXXXXXX/Train/Blackbird_1.JPG","Bird-Label-Train":{"workerId":XXXXXXXX,"imageSource":{"s3Uri":"s3://XXXXXXX/Train/Blackbird_1.JPG"},"boxesInfo":{"annotatedResult":{"boundingBoxes":[{"width":1612,"top":841,"label":"Blackbird","left":1276,"height":757}],"inputImageProperties":{"width":3872,"height":2592}}}},"Bird-Label-Train-metadata":{"type":"groundtruth/custom","job-name":"bird-label-train","human-annotated":"yes","creation-date":"2019-01-16T17:28:23+0000"}}
以下是我用于笔记本实例的参数:
training_params = \
{
"AlgorithmSpecification": {
"TrainingImage": training_image, # NB. This is one of the named constants defined in the first cell.
"TrainingInputMode": "Pipe"
},
"RoleArn": role,
"OutputDataConfig": {
"S3OutputPath": s3_output_path
},
"ResourceConfig": {
"InstanceCount": 1,
"InstanceType": "ml.p3.2xlarge",
"VolumeSizeInGB": 5
},
"TrainingJobName": job_name,
"HyperParameters": { # NB. These hyperparameters are at the user's discretion and are beyond the scope of this demo.
"base_network": "resnet-50",
"use_pretrained_model": "1",
"num_classes": "1",
"mini_batch_size": "16",
"epochs": "5",
"learning_rate": "0.001",
"lr_scheduler_step": "3,6",
"lr_scheduler_factor": "0.1",
"optimizer": "rmsprop",
"momentum": "0.9",
"weight_decay": "0.0005",
"overlap_threshold": "0.5",
"nms_threshold": "0.45",
"image_shape": "300",
"label_width": "350",
"num_training_samples": str(num_training_samples)
},
"StoppingCondition": {
"MaxRuntimeInSeconds": 86400
},
"InputDataConfig": [
{
"ChannelName": "train",
"DataSource": {
"S3DataSource": {
"S3DataType": "AugmentedManifestFile", # NB. Augmented Manifest
"S3Uri": s3_train_data_path,
"S3DataDistributionType": "FullyReplicated",
"AttributeNames": ["source-ref","Bird-Label-Train"] # NB. This must correspond to the JSON field names in your augmented manifest.
}
},
"ContentType": "image/jpeg",
"RecordWrapperType": "None",
"CompressionType": "None"
},
{
"ChannelName": "validation",
"DataSource": {
"S3DataSource": {
"S3DataType": "AugmentedManifestFile", # NB. Augmented Manifest
"S3Uri": s3_validation_data_path,
"S3DataDistributionType": "FullyReplicated",
"AttributeNames": ["source-ref","Bird-Label"] # NB. This must correspond to the JSON field names in your augmented manifest.
}
},
"ContentType": "image/jpeg",
"RecordWrapperType": "None",
"CompressionType": "None"
}
]
在运行ml.p3.2xlarge实例后,我最终将其打印出来:
InProgress Starting
InProgress Starting
InProgress Starting
InProgress Training
Failed Failed
此错误消息之后: “ ClientError:未指定火车频道。”
有人对我如何无误运行该软件有任何想法吗?任何帮助都非常感谢!
成功运行:以下是成功运行所使用的参数以及增强清单JSON对象。
training_params = \
{
"AlgorithmSpecification": {
"TrainingImage": training_image, # NB. This is one of the named constants defined in the first cell.
"TrainingInputMode": "Pipe"
},
"RoleArn": role,
"OutputDataConfig": {
"S3OutputPath": s3_output_path
},
"ResourceConfig": {
"InstanceCount": 1,
"InstanceType": "ml.p3.2xlarge",
"VolumeSizeInGB": 50
},
"TrainingJobName": job_name,
"HyperParameters": { # NB. These hyperparameters are at the user's discretion and are beyond the scope of this demo.
"base_network": "resnet-50",
"use_pretrained_model": "1",
"num_classes": "3",
"mini_batch_size": "1",
"epochs": "5",
"learning_rate": "0.001",
"lr_scheduler_step": "3,6",
"lr_scheduler_factor": "0.1",
"optimizer": "rmsprop",
"momentum": "0.9",
"weight_decay": "0.0005",
"overlap_threshold": "0.5",
"nms_threshold": "0.45",
"image_shape": "300",
"label_width": "350",
"num_training_samples": str(num_training_samples)
},
"StoppingCondition": {
"MaxRuntimeInSeconds": 86400
},
"InputDataConfig": [
{
"ChannelName": "train",
"DataSource": {
"S3DataSource": {
"S3DataType": "AugmentedManifestFile", # NB. Augmented Manifest
"S3Uri": s3_train_data_path,
"S3DataDistributionType": "FullyReplicated",
"AttributeNames": attribute_names # NB. This must correspond to the JSON field names in your **TRAIN** augmented manifest.
}
},
"ContentType": "application/x-recordio",
"RecordWrapperType": "RecordIO",
"CompressionType": "None"
},
{
"ChannelName": "validation",
"DataSource": {
"S3DataSource": {
"S3DataType": "AugmentedManifestFile", # NB. Augmented Manifest
"S3Uri": s3_validation_data_path,
"S3DataDistributionType": "FullyReplicated",
"AttributeNames": ["source-ref","ValidateBird"] # NB. This must correspond to the JSON field names in your **VALIDATION** augmented manifest.
}
},
"ContentType": "application/x-recordio",
"RecordWrapperType": "RecordIO",
"CompressionType": "None"
}
]
}
在训练作业运行期间生成的训练增强清单文件
Line 1
{"source-ref":"s3://XXXXX/Train/Blackbird_1.JPG","TrainBird":{"annotations":[{"class_id":0,"width":1613,"top":840,"height":766,"left":1293}],"image_size":[{"width":3872,"depth":3,"height":2592}]},"TrainBird-metadata":{"job-name":"labeling-job/trainbird","class-map":{"0":"Blackbird"},"human-annotated":"yes","objects":[{"confidence":0.09}],"creation-date":"2019-02-09T14:21:29.829003","type":"groundtruth/object-detection"}}
Line 2
{"source-ref":"s3://xxxxx/Train/Blackbird_2.JPG","TrainBird":{"annotations":[{"class_id":0,"width":897,"top":665,"height":1601,"left":1598}],"image_size":[{"width":3872,"depth":3,"height":2592}]},"TrainBird-metadata":{"job-name":"labeling-job/trainbird","class-map":{"0":"Blackbird"},"human-annotated":"yes","objects":[{"confidence":0.09}],"creation-date":"2019-02-09T14:22:34.502274","type":"groundtruth/object-detection"}}
Line 3
{"source-ref":"s3://XXXXX/Train/Blackbird_3.JPG","TrainBird":{"annotations":[{"class_id":0,"width":1040,"top":509,"height":1695,"left":1548}],"image_size":[{"width":3872,"depth":3,"height":2592}]},"TrainBird-metadata":{"job-name":"labeling-job/trainbird","class-map":{"0":"Blackbird"},"human-annotated":"yes","objects":[{"confidence":0.09}],"creation-date":"2019-02-09T14:20:26.660164","type":"groundtruth/object-detection"}}
然后我将model.tar文件解压缩以获取以下文件:hyperparams.JSON,model_algo_1-0000.params和model_algo_1-符号
hyperparams.JSON看起来像这样:
{"label_width": "350", "early_stopping_min_epochs": "10", "epochs": "5", "overlap_threshold": "0.5", "lr_scheduler_factor": "0.1", "_num_kv_servers": "auto", "weight_decay": "0.0005", "mini_batch_size": "1", "use_pretrained_model": "1", "freeze_layer_pattern": "", "lr_scheduler_step": "3,6", "early_stopping": "False", "early_stopping_patience": "5", "momentum": "0.9", "num_training_samples": "11", "optimizer": "rmsprop", "_tuning_objective_metric": "", "early_stopping_tolerance": "0.0", "learning_rate": "0.001", "kv_store": "device", "nms_threshold": "0.45", "num_classes": "1", "base_network": "resnet-50", "nms_topk": "400", "_kvstore": "device", "image_shape": "300"}
答案 0 :(得分:0)
在训练和验证频道中,“ AttributeNames”参数都必须为['source-ref','您的标签在这里']
答案 1 :(得分:0)
不幸的是,AugmentedManifestFile
内容类型不支持带有image/jpeg
的管道模式。要使用此功能,您需要将RecordWrapperType
指定为RecordIO
,将ContentType
指定为application/x-recordio
。
答案 2 :(得分:0)
再次感谢您的帮助。所有这些都可以帮助我进一步发展。在AWS论坛页面上收到回复后,我终于使它起作用了。
我了解到我的JSON与扩充清单培训指南略有不同。回到基础上,我创建了另一个标签工作,但是使用的是“边界框”类型,而不是“自定义-边界框模板”。我的输出符合预期。运行没有错误!
由于我的目的是拥有多个标签,因此我能够编辑文件和输出清单的映射,这也有效!
即
{"source-ref":"s3://xxxxx/Blackbird_15.JPG","ValidateBird":{"annotations":[{"class_id":0,"width":2023,"top":665,"height":1421,"left":1312}],"image_size":[{"width":3872,"depth":3,"height":2592}]},"ValidateBird-metadata":{"job-name":"labeling-job/validatebird","class-map":{"0":"Blackbird"},"human-annotated":"yes","objects":[{"confidence":0.09}],"creation-date":"2019-02-09T14:23:51.174131","type":"groundtruth/object-detection"}}
{"source-ref":"s3://xxxx/Pigeon_19.JPG","ValidateBird":{"annotations":[{"class_id":2,"width":784,"top":634,"height":1657,"left":1306}],"image_size":[{"width":3872,"depth":3,"height":2592}]},"ValidateBird-metadata":{"job-name":"labeling-job/validatebird","class-map":{"2":"Pigeon"},"human-annotated":"yes","objects":[{"confidence":0.09}],"creation-date":"2019-02-09T14:23:51.074809","type":"groundtruth/object-detection"}}
通过标记作业,所有图像的原始映射均为0:“ Bird”。