我的目标是在我的数据集的年内按大小汇总数据。我能够分别完成这两项任务(例如,按年份汇总或按bin汇总),但是在合并两者时遇到语法麻烦。
以下是我可以按年份汇总数据的方法:
size_summary = df_raw.groupby(['Year'])['Quantity'].describe()
下面是我创建垃圾箱的方式
mult = 1
bins = [5*mult, 10*mult, 25*mult, 50*mult, 100*mult]
groups = df_raw.groupby(pd.cut(df_raw['Quantity'], bins))
当我尝试在下面将两者结合时,出现错误消息。有人知道如何结合使用以达到我的目标吗?谢谢您的帮助。
groups.groupby(['Year'])['Quantity'].describe()
AttributeError: Cannot access callable attribute 'groupby' of 'DataFrameGroupBy' objects, try using the 'apply' method
编辑:按照下面的要求添加样本数据。
df_raw = pd.DataFrame(data={
'Year': [2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2012, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014, 2014],
'Quantity': [2.0, 3.0, 78.8, 65.7, 70.0, 61.9, 83.9, 39.7, 44.1, 14.5, 35.3, 82.2, 13.9, 66.6, 65.8, 94.8, 50.8, 17.1, 9.9, 51.1, 62.9, 63.0, 13.5, 37.6, 1.5, 70.7, 23.3, 28.1, 21.9, 60.7, 1.1, 67.2, 0.4, 81.4, 86.7, 36.2, 45.2, 50.4, 43.3]
})
答案 0 :(得分:1)
您真的很亲近。请尝试以下一项:
mult = 1
bins = [0, 5*mult, 10*mult, 25*mult, 50*mult, 100*mult]
df_raw['bin'] = pd.cut(df_raw['Quantity'], bins)
df_raw.pivot_table(index = 'bin', columns = 'Year', aggfunc = 'count')
答案 1 :(得分:1)
作为 @Override
public boolean onOptionsItemSelected(MenuItem item) {
switch (item.getItemId()) {
case R.id.action_save:
insertTask();
// Exit activity
finish();
return true;
case android.R.id.home:
// Navigate back to parent activity (CatalogActivity)
NavUtils.navigateUpFromSameTask(this);
return true;
}
return super.onOptionsItemSelected(item);
}
@Override
public void onClick(View v) {
switch (v.getId()){
case R.id.button1:
final EditText editText = new EditText(this);
AlertDialog dialog = new AlertDialog.Builder(this)
.setTitle("Add new Challenge")
.setMessage("Whats your Challenge")
.setView(editText)
.setPositiveButton("Add", new DialogInterface.OnClickListener() {
@Override
public void onClick(DialogInterface dialog, int which) {
String task = String.valueOf(editText.getText());
insertDay(task);
}
})
.setNegativeButton("CANCEL", null)
.create();
dialog.getWindow().getAttributes().windowAnimations=R.style.DialogAnimation;
dialog.show();
}
}
//TEMPORARY SOLUTION
public void insertDay(String task) {
DbHelper mDbHelper = new DbHelper(this);
SQLiteDatabase db = mDbHelper.getWritableDatabase();
ContentValues values = new ContentValues();
values.put(ChallengesEntry.DB_COLUMN_DAYS,task );
db.insertWithOnConflict(ChallengesEntry.DB_TABLE, null, values, SQLiteDatabase.CONFLICT_REPLACE);
db.close();
}
public void insertTask(){
String name=editChallengeName.getText().toString().trim();
DbHelper mDbHelper = new DbHelper(this);
SQLiteDatabase db = mDbHelper.getWritableDatabase();
ContentValues values = new ContentValues();
values.put(ChallengesEntry.DB_COLUMN,name);
db.insertWithOnConflict(ChallengesEntry.DB_TABLE, null, values, SQLiteDatabase.CONFLICT_REPLACE);
db.close();
}
的替代方法,您可以按箱和年份分组,然后通过pivot_table
重塑数据:
unstack
# first group by bins, then by year
groups = df_raw.groupby([pd.cut(df_raw['Quantity'], bins), 'Year'])
# compute group size, pivot into the shape you want
counts = groups.size().unstack(fill_value=0)
counts
这比您提供的示例数据上的Year 2012 2013 2014
Quantity
(5, 10] 0 1 0
(10, 25] 2 3 1
(25, 50] 3 2 3
(50, 100] 7 7 5
快2.5倍。
要将分类区间索引拆分为pivot_table
,请使用类似
MultiIndex
def interval_to_tuple(interval):
return interval.left, interval.right
counts.set_index(
counts.index.astype(object).map(interval_to_tuple).rename(['Lower', 'Upper']))
您应该能够将此结果顺利导出到Excel。