我有一个[6,20,30,6]
形状的4-D张量,我想执行以下等价的keras / tensorflow:
new = np.array([old[i,:,:,i] for i in range(6)])
感谢您的帮助!
答案 0 :(得分:1)
您可以扩展old
的尺寸,使用理解列表来选择所需的切片并将其沿扩展的尺寸连接起来。例如:
import tensorflow as tf
import numpy as np
tensor_shape = (6, 20, 30, 6)
old = np.arange(np.prod(tensor_shape)).reshape(tensor_shape)
new = np.array([old[i, :, :, i] for i in range(6)])
old_ = tf.placeholder(old.dtype, tensor_shape)
new_ = tf.concat([old[None, i, :, :, i] for i in range(6)], axis=0)
with tf.Session() as sess:
new_tf = sess.run(new_, feed_dict={old_: old})
assert (new == new_tf).all()
答案 1 :(得分:1)
感谢@rvinas的回答,我得以将其转换为纯净的喀拉拉邦。
def cc(x):
return K.backend.stack([x[:,i, :, :, i] for i in range(6)], axis=1)
然后在keras模型定义中:
new=L.Lambda(lambda y: cc(y))(old)