我正在研究有关银行业务的非违约者和违约者。在这种情况下,我正在绘制他们的分布相对于条形图中的某些分数。分数越高,信用评级越高。
由于默认值的数量与非默认值相比非常有限,因此在同一条形图上绘制默认值和非默认值并不是非常有用,因为您几乎看不到默认值。然后我根据违约者的得分制作第二个条形图,但是在与违约者和非违约者的得分的完整条形图相同的间隔尺度上。然后,我将垂直线添加到第一个条形图,指示最高和最低的违约者得分所在的位置。这是为了了解违约者的分布在违规者和非违约者的整体分布中的位置。
x轴容易变得非常“拥挤”。我想删除一些刻度线的文本,但不是所有的刻度线。
以下是我使用的代码替换为(种子)随机数据。
第一个条形图是关于刻度线上的文字我想要的,但是我错过了第二个条形图中的所有刻度。在第二个条形图中显示“拥挤”的性质!
library(ggplot2)
library(ggExtra)
#NDS represents non-defaults and DS defaults on the same scale
#although here being just some random normals for the sake of simplicity.
set.seed(10)
NDS<-rnorm(10000,sd=1)-2
DS<-rnorm(100,sd=2)-5
#Cutoffs are constructed such that intervals of size 0.3 contain all values
#of NDS & DS
minCutoff<--9.3
maxCutoff<-2.1
#Generate the actual interval "bins"
NDS_CUT<-cut(NDS,breaks=seq(minCutoff, maxCutoff, by = 0.3))
DS_CUT<-cut(DS,breaks=seq(minCutoff, maxCutoff, by = 0.3))
#Manually generate where to put the vertical lines for min(DS) and max(DS)
minDS_bar<-levels(cut(NDS,breaks=seq(minCutoff, maxCutoff, by = 0.3)))[1]
maxDS_bar<-levels(cut(NDS,breaks=seq(minCutoff, maxCutoff, by = 0.3)))[32]
#Generate data frame - seems stupid, but makes sense
#when the "real" data is used :-)
NDSdataframe<-cbind(as.data.frame(NDS_CUT),rep(factor("State-1"),length(NDS_CUT)))
colnames(NDSdataframe)<-c("Score","Action")
DSdataframe<-cbind(as.data.frame(DS_CUT),rep(factor("State-2"),length(DS_CUT)))
colnames(DSdataframe)<-c("Score","Action")
fulldataframe<-rbind(NDSdataframe,DSdataframe)
attach(fulldataframe)
#Plot the full distribution of NDS & DS with geom_vlines
#Get the tick texts I want to show
myLevels<-levels(cut(NDS,breaks=seq(roundDownNDS, roundUpNDS, by = 0.3)))
lengthMyLevels<-length(myLevels)
myBreaks<-seq(1,lengthMyLevels,3)
chosenbreaks<-myLevels[myBreaks[1]]
for(i in 2:length(myBreaks))
{
chosenbreaks<-rbind(chosenbreaks,myLevels[myBreaks[i]])
}
#Generate the plot of both NDS & DS
fullplot<-ggplot(fulldataframe, aes(Score, fill=factor(Action,levels=c("State- 2","State-1")))) + geom_bar(position="stack") + opts(axis.text.x = theme_text(angle = 45,size=8)) + opts(legend.position = "none") + xlab("Scoreinterval") + ylab("Antal pr. interval") + geom_vline(aes(xintercept = minDS_bar, colour="red")) + geom_vline(aes(xintercept = maxDS_bar, colour="red")) + scale_x_discrete("test",breaks=chosenbreaks)
#Generate second dataframe for the plot of DS only
DSdataframe2<-cbind(na.omit(as.data.frame(DS_CUT)),rep(factor("Fallit"),length (na.omit(as.data.frame(DS_CUT)))))
colnames(DSdataframe2)<-c("theScore","theAction")
#Calculate max value for the DS
myMax<-max(table(DSdataframe2))+1
attach(DSdataframe2)
#Generate plot for the DS only
subplot<-ggplot(fulldataframe, aes(theScore, fill=factor(theAction))) + geom_bar (position="stack") + opts(axis.text.x = theme_text(angle = 45)) + opts(legend.position = "none") + ylim(0, myMax) + xlab("Scoreinterval") + ylab("Antal pr. interval")
#Using the ggExtra package the to plots are aligned
align.plots(fullplot, subplot)
detach(DSdataframe2)
detach(fulldataframe)
非常感谢任何帮助!
谢谢,
基督教
答案 0 :(得分:5)
如果我理解正确,您只需为每个其他标签指定空文本标签,
library(ggplot2)
interleave <- function(x,y){
lx <- length(x)
ly <- length(y)
n <- max(lx,ly)
as.vector(rbind(rep(x, length.out=n), rep(y, length.out=n)))
}
d <- data.frame(x=1:10, y=rnorm(10))
my_breaks <- seq(1,10,by=1)
my_labs <- interleave(seq(1,10,by=2), "")
qplot(x,y,data=d)+
scale_x_continuous(breaks=my_breaks, labels=my_labs)
答案 1 :(得分:0)
这是另一个版本,基于@baptiste,允许轻松选择偶数或奇数,每三分之一等。
library(ggplot2)
library(gridExtra)
## helper function
## periodically replace orig with .fill
label_fill <- function(orig, .offset=0, .mod=2, .fill=""){
## replace
ii <- as.logical(
## offset==0 keeps first
(1:length(orig)-1+.offset) %% .mod
)
orig[ii] <- .fill
orig
}
## data, labels
nn <- 10
my_dat <- data.frame(x=1:nn, y=rnorm(nn))
my_breaks <- my_dat$x
my_plot <- (
ggplot(my_dat, aes(x,y))
+ geom_line()
## default: every other, start from 1
## by default, function takes breaks
+ scale_x_continuous(
breaks=my_breaks, labels=label_fill
)
+ theme_bw()
)
## another form
## manually pass breaks
every_third <- scale_x_continuous(
breaks=my_breaks,
labels=label_fill(my_breaks, .mod=3)
)
## side-by-side
grid.arrange(ncol=2,
my_plot,
## every third with offset
my_plot + every_third
)