将4D数据绘制为Python中的分层热图

时间:2019-01-07 10:46:33

标签: python matplotlib 3d heatmap

我想使用(x,y,z)坐标和基于颜色的第四维来创建与强度相关的分层热图。

每个与图层相关的数据都位于一个带有x,y,z和G列的文本文件中。定界符为空白。抱歉,如果显示不正确。

XA 200 600 1200 1800 2400 3000 200 600 1200 1800 2400 3000

YA 0 0 0 0 0 0 600 600 600 600 600 600

ZA 600 600 600 600 600 600 600 600 600 600 600 600

GA 1.27 1.54 1.49 1.34 1.27 1.25 1.28 1.96 1.12 1.06 1.06 1.06

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

data = np.load(filename)

x = np.linspace(0,2400,num=6)
y = np.linspace(0,2400,num=11)
X,Y=np.meshgrid(x,y)
Z = data[:,:,0] * 1e-3

plt.contourf(X,Y,Z)
plt.colorbar()

如何读取文本文件,沿Z轴创建和叠加热图?

1 个答案:

答案 0 :(得分:0)

Say you have two txt files, namely data-z600.txt and data-z1200.txt, in the same folder as your python script, whose contents are exactly

data-z600.txt (yours)

XA YA ZA GA
200 0 600 1.27
600 0 600 1.54
1200 0 600 1.49
1800 0 600 1.34
2400 0 600 1.27
3000 0 600 1.25
200 600 600 1.28
600 600 600 1.96
1200 600 600 1.12
1800 600 600 1.06
2400 600 600 1.06
3000 600 600 1.06

and data-z1200.txt (invented on purpose)

XA YA ZA GA
200 0 1200 1.31
600 0 1200 2
1200 0 1200 1.63
1800 0 1200 1.36
2400 0 1200 1.31
3000 0 1200 1.35
200 600 1200 1.38
600 600 1200 1.36
1200 600 1200 1.2
1800 600 1200 1.1
2400 600 1200 1.1
3000 600 1200 1.11

Let's import all the required libraries

# libraries
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import scipy.interpolate as si
from matplotlib import cm
import pandas as pd
import numpy as np

and define grids_maker, a function that does the job of preparing data contained in a given file, here targeted via the filepath argument.

def grids_maker(filepath):
    # Get the data
    df = pd.read_csv(filepath, sep=' ')

    # Make things more legible
    xy = df[['XA', 'YA']]
    x  = xy.XA
    y  = xy.YA
    z  = df.ZA
    g  = df.GA
    reso_x = reso_y = 50
    interp = 'cubic' # or 'nearest' or 'linear'

    # Convert the 4d-space's dimensions into grids
    grid_x, grid_y = np.mgrid[
        x.min():x.max():1j*reso_x,
        y.min():y.max():1j*reso_y
    ]

    grid_z = si.griddata(
        xy, z.values,
        (grid_x, grid_y),
        method=interp
    )

    grid_g = si.griddata(
        xy, g.values,
        (grid_x, grid_y),
        method=interp
    )

    return {
        'x' : grid_x,
        'y' : grid_y,
        'z' : grid_z,
        'g' : grid_g,
    }

Let's use grids_maker over our list of files and get the extrema of each file's 4th dimension.

# Let's retrieve all files' contents
fgrids = dict.fromkeys([
    'data-z600.txt',
    'data-z1200.txt'
])
g_mins = []
g_maxs = []

for fpath in fgrids.keys():
    fgrids[fpath] = grids = grids_maker(fpath)
    g_mins.append(grids['g'].min())
    g_maxs.append(grids['g'].max())

Let's create our (all-file unifying) color-scale

# Create the 4th color-rendered dimension
scam = plt.cm.ScalarMappable(
    norm=cm.colors.Normalize(min(g_mins), max(g_maxs)),
    cmap='jet' # see https://matplotlib.org/examples/color/colormaps_reference.html
)

... and finally make/show the plot

# Make the plot
fig = plt.figure()
ax  = fig.gca(projection='3d')
for grids in fgrids.values(): 
    scam.set_array([])   
    ax.plot_surface(
        grids['x'], grids['y'], grids['z'],
        facecolors  = scam.to_rgba(grids['g']),
        antialiased = True,
        rstride=1, cstride=1, alpha=None
    )
plt.show()

enter image description here