我正在尝试转换此代码:
double *pB = b[voiceIndex];
double *pC = c[voiceIndex];
double phase = mPhase;
double bp0 = mNoteFrequency * mHostPitch;
for (int sampleIndex = 0; sampleIndex < blockSize; sampleIndex++) {
// some other code (that will use phase, like sin(phase))
phase += std::clamp(radiansPerSample * (bp0 * pB[sampleIndex] + pC[sampleIndex]), 0.0, PI);
}
mPhase = phase;
在SSE2中,尝试加速整个块(通常称为)。我正在将MSVC与Fast optimizazion标志一起使用,但是自动向量化非常糟糕。由于我也在学习矢量化,因此我发现这是一个不错的挑战。
因此,我采用了上面的公式,并对其进行了简化,例如:
radiansPerSampleBp0 = radiansPerSample * bp0;
phase += std::clamp(radiansPerSampleBp0 * pB[sampleIndex] + radiansPerSample * pC[sampleIndex]), 0.0, PI);
可以将其静音为串行依赖项,例如:
phase[0] += (radiansPerSampleBp0 * pB[0] + radiansPerSample * pC[0])
phase[1] += (radiansPerSampleBp0 * pB[1] + radiansPerSample * pC[1]) + (radiansPerSampleBp0 * pB[0] + radiansPerSample * pC[0])
phase[2] += (radiansPerSampleBp0 * pB[2] + radiansPerSample * pC[2]) + (radiansPerSampleBp0 * pB[1] + radiansPerSample * pC[1])
phase[3] += (radiansPerSampleBp0 * pB[3] + radiansPerSample * pC[3]) + (radiansPerSampleBp0 * pB[2] + radiansPerSample * pC[2])
phase[4] += (radiansPerSampleBp0 * pB[4] + radiansPerSample * pC[4]) + (radiansPerSampleBp0 * pB[3] + radiansPerSample * pC[3])
phase[5] += (radiansPerSampleBp0 * pB[5] + radiansPerSample * pC[5]) + (radiansPerSampleBp0 * pB[4] + radiansPerSample * pC[4])
因此,我所做的代码:
double *pB = b[voiceIndex];
double *pC = c[voiceIndex];
double phase = mPhase;
double bp0 = mNoteFrequency * mHostPitch;
__m128d v_boundLower = _mm_set1_pd(0.0);
__m128d v_boundUpper = _mm_set1_pd(PI);
__m128d v_radiansPerSampleBp0 = _mm_set1_pd(mRadiansPerSample * bp0);
__m128d v_radiansPerSample = _mm_set1_pd(mRadiansPerSample);
__m128d v_pB0 = _mm_load_pd(pB);
v_pB0 = _mm_mul_pd(v_pB0, v_radiansPerSampleBp0);
__m128d v_pC0 = _mm_load_pd(pC);
v_pC0 = _mm_mul_pd(v_pC0, v_radiansPerSample);
__m128d v_pB1 = _mm_setr_pd(0.0, pB[0]);
v_pB1 = _mm_mul_pd(v_pB1, v_radiansPerSampleBp0);
__m128d v_pC1 = _mm_setr_pd(0.0, pC[0]);
v_pC1 = _mm_mul_pd(v_pC1, v_radiansPerSample);
__m128d v_phase = _mm_set1_pd(phase);
__m128d v_phaseAcc;
for (int sampleIndex = 0; sampleIndex < blockSize; sampleIndex += 2, pB += 2, pC += 2) {
// some other code (that will use phase, like sin(phase))
v_phaseAcc = _mm_add_pd(v_pB0, v_pC0);
v_phaseAcc = _mm_max_pd(v_phaseAcc, v_boundLower);
v_phaseAcc = _mm_min_pd(v_phaseAcc, v_boundUpper);
v_phaseAcc = _mm_add_pd(v_phaseAcc, v_pB1);
v_phaseAcc = _mm_add_pd(v_phaseAcc, v_pC1);
v_phase = _mm_add_pd(v_phase, v_phaseAcc);
v_pB0 = _mm_load_pd(pB + 2);
v_pB0 = _mm_mul_pd(v_pB0, v_radiansPerSampleBp0);
v_pC0 = _mm_load_pd(pC + 2);
v_pC0 = _mm_mul_pd(v_pC0, v_radiansPerSample);
v_pB1 = _mm_load_pd(pB + 1);
v_pB1 = _mm_mul_pd(v_pB1, v_radiansPerSampleBp0);
v_pC1 = _mm_load_pd(pC + 1);
v_pC1 = _mm_mul_pd(v_pC1, v_radiansPerSample);
}
mPhase = v_phase.m128d_f64[blockSize % 2 == 0 ? 1 : 0];
但是,不幸的是,在总和“步长”之后,每个相位值的结果变得非常不同。 试图调试,但我真的无法找到问题所在。
而且,它不是真的“快速”,而不是旧版本。
您能够识别出问题吗?以及如何加快代码的速度?
如果您要检查两个不同的输出,则为完整的代码:
#include <iostream>
#include <algorithm>
#include <immintrin.h>
#include <emmintrin.h>
#define PI 3.14159265358979323846
constexpr int voiceSize = 1;
constexpr int bufferSize = 256;
class Param
{
public:
alignas(16) double mPhase = 0.0;
alignas(16) double mPhaseOptimized = 0.0;
alignas(16) double mNoteFrequency = 10.0;
alignas(16) double mHostPitch = 1.0;
alignas(16) double mRadiansPerSample = 1.0;
alignas(16) double b[voiceSize][bufferSize];
alignas(16) double c[voiceSize][bufferSize];
Param() { }
inline void Process(int voiceIndex, int blockSize) {
double *pB = b[voiceIndex];
double *pC = c[voiceIndex];
double phase = mPhase;
double bp0 = mNoteFrequency * mHostPitch;
for (int sampleIndex = 0; sampleIndex < blockSize; sampleIndex++) {
// some other code (that will use phase, like sin(phase))
phase += std::clamp(mRadiansPerSample * (bp0 * pB[sampleIndex] + pC[sampleIndex]), 0.0, PI);
std::cout << sampleIndex << ": " << phase << std::endl;
}
mPhase = phase;
}
inline void ProcessOptimized(int voiceIndex, int blockSize) {
double *pB = b[voiceIndex];
double *pC = c[voiceIndex];
double phase = mPhaseOptimized;
double bp0 = mNoteFrequency * mHostPitch;
__m128d v_boundLower = _mm_set1_pd(0.0);
__m128d v_boundUpper = _mm_set1_pd(PI);
__m128d v_radiansPerSampleBp0 = _mm_set1_pd(mRadiansPerSample * bp0);
__m128d v_radiansPerSample = _mm_set1_pd(mRadiansPerSample);
__m128d v_pB0 = _mm_load_pd(pB);
v_pB0 = _mm_mul_pd(v_pB0, v_radiansPerSampleBp0);
__m128d v_pC0 = _mm_load_pd(pC);
v_pC0 = _mm_mul_pd(v_pC0, v_radiansPerSample);
__m128d v_pB1 = _mm_setr_pd(0.0, pB[0]);
v_pB1 = _mm_mul_pd(v_pB1, v_radiansPerSampleBp0);
__m128d v_pC1 = _mm_setr_pd(0.0, pC[0]);
v_pC1 = _mm_mul_pd(v_pC1, v_radiansPerSample);
__m128d v_phase = _mm_set1_pd(phase);
__m128d v_phaseAcc;
for (int sampleIndex = 0; sampleIndex < blockSize; sampleIndex += 2, pB += 2, pC += 2) {
// some other code (that will use phase, like sin(phase))
v_phaseAcc = _mm_add_pd(v_pB0, v_pC0);
v_phaseAcc = _mm_max_pd(v_phaseAcc, v_boundLower);
v_phaseAcc = _mm_min_pd(v_phaseAcc, v_boundUpper);
v_phaseAcc = _mm_add_pd(v_phaseAcc, v_pB1);
v_phaseAcc = _mm_add_pd(v_phaseAcc, v_pC1);
v_phase = _mm_add_pd(v_phase, v_phaseAcc);
v_pB0 = _mm_load_pd(pB + 2);
v_pB0 = _mm_mul_pd(v_pB0, v_radiansPerSampleBp0);
v_pC0 = _mm_load_pd(pC + 2);
v_pC0 = _mm_mul_pd(v_pC0, v_radiansPerSample);
v_pB1 = _mm_load_pd(pB + 1);
v_pB1 = _mm_mul_pd(v_pB1, v_radiansPerSampleBp0);
v_pC1 = _mm_load_pd(pC + 1);
v_pC1 = _mm_mul_pd(v_pC1, v_radiansPerSample);
std::cout << sampleIndex << ": " << v_phase.m128d_f64[0] << std::endl;
std::cout << sampleIndex + 1 << ": " << v_phase.m128d_f64[1] << std::endl;
}
mPhaseOptimized = v_phase.m128d_f64[blockSize % 2 == 0 ? 1 : 0];
}
};
class MyPlugin
{
public:
Param mParam1;
MyPlugin() {
// fill b
for (int voiceIndex = 0; voiceIndex < voiceSize; voiceIndex++) {
for (int sampleIndex = 0; sampleIndex < bufferSize; sampleIndex++) {
double value = (sampleIndex / ((double)bufferSize - 1));
mParam1.b[voiceIndex][sampleIndex] = value;
}
}
// fill c
for (int voiceIndex = 0; voiceIndex < voiceSize; voiceIndex++) {
for (int sampleIndex = 0; sampleIndex < bufferSize; sampleIndex++) {
double value = 0.0;
mParam1.c[voiceIndex][sampleIndex] = value;
}
}
}
~MyPlugin() { }
void Process(int blockSize) {
for (int voiceIndex = 0; voiceIndex < voiceSize; voiceIndex++) {
mParam1.Process(voiceIndex, blockSize);
}
}
void ProcessOptimized(int blockSize) {
for (int voiceIndex = 0; voiceIndex < voiceSize; voiceIndex++) {
mParam1.ProcessOptimized(voiceIndex, blockSize);
}
}
};
int main() {
MyPlugin myPlugin;
long long numProcessing = 1;
long long counterProcessing = 0;
// I'll only process once block, just for analysis
while (counterProcessing++ < numProcessing) {
// variable blockSize (i.e. it can vary, being even or odd)
int blockSize = 256;
// process data
myPlugin.Process(blockSize);
std::cout << "#########" << std::endl;
myPlugin.ProcessOptimized(blockSize);
}
}
答案 0 :(得分:1)
(更新:此答案是在显示v_phase
在循环内使用的编辑之前写的。)
请稍等,我认为in your previous question的每一步都需要phase
的值。是的,循环中有// some other code (that will use phase)
条评论。
但是,您似乎只对最终值感兴趣。因此,您可以自由地对事物进行重新排序,因为每个步骤的限制都是独立的。
这只是一个约简(如数组的总和),需要进行一些处理以生成约简的输入。
您希望v_phase
的2个元素是偶数/奇数元素的2个独立的部分和。然后将其水平求和。 (例如,_mm_unpackhi_pd(v_phase, v_phase)
将上半部分降到最低,或查看Fastest way to do horizontal float vector sum on x86)。
然后可选地对结果使用标量fmod
以将范围缩小到[0..2Pi)
范围。 (如果发现精度会成为问题,那么在求和期间偶尔减小范围可以通过阻止该值变得太大来提高精度。)
如果不是这种情况,并且您确实需要在每个{ phase[i+0], phase[i+1] }
步骤中将向量i+=2
用于某个事物,那么您的问题似乎与prefix sum有关。但是每个向量只有2个元素,对没有对齐负载的元素进行多余的处理可能是有意义的。
节省的费用可能比我想的要少,因为您需要分别夹紧每个步骤:在相乘之前执行pB[i+0] + pB[i+1]
可能会导致不同的夹紧。
但是您显然已经消除了简化公式中的限制,因此您可以在应用mul / add公式之前添加元素。
或者一次完成两个步骤的乘法/加法运算,然后将其改组以添加正确的运算法则也许是一个胜利。