我正在尝试为仪器检测训练我的模型。从第一个时期开始,输出显示为损失:nan 。我尝试更改损失函数,激活函数,并添加了一些诸如Dropout的正则化,但是并没有影响结果。
代码如下:
from keras.utils import to_categorical
from keras.models import Sequential
from keras.layers import Dense, Conv2D, Flatten, Dropout
from keras.optimizers import Adam
import pickle
import os
import numpy as np
from sklearn.model_selection import train_test_split
def one_hot_encoding(target):
Instruments = ['vio', 'pia', 'tru', 'flu']
enc_tar = np.zeros([len(target), 4])
for i in range(len(target)):
enc_tar[i][Instruments.index(target[i])] = 1
return enc_tar
def create_model_cnn(inp_shape):
classifier = Sequential()
classifier.add(Conv2D(25, kernel_size = 3, activation = 'relu', input_shape = inp_shape))
classifier.add(Conv2D(10, kernel_size = 3, activation = 'relu'))
classifier.add(Flatten())
classifier.add(Dense(4, activation = 'softmax'))
adam = Adam(0.001)
classifier.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])
return classifier
def create_model_mlp(inp_shape):
classifier = Sequential()
classifier.add(Dense(22, activation = 'softsign', input_shape = (42,)))
classifier.add(Dropout(0.25))
classifier.add(Dense(10, activation = 'softsign'))
classifier.add(Dropout(0.25))
classifier.add(Dense(4, activation = 'softmax'))
adam = Adam(0.0001)
classifier.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics = ['accuracy'])
return classifier
def get_weights(classifier):
return classifier.get_weights()
def set_weights(classifier, weights):
classifier.set_weights(weights)
return classifier
def train_model(classifier, data, target, epoch = 40):
classifier.fit(data, target, epochs = epoch, validation_split=0.4, batch_size = 32, verbose = 1)
return classifier
def predict(classifier, data):
return classifier.predict(data)
if __name__ == '__main__':
#Get the data and the target
[data, target] = pickle.load(open('../input/music-features/feat_targ.pickle', 'rb'))
#if 'model.pickle' not in os.listdir():
#Generate the classifiers
cnn_classifier = create_model_cnn((6, 7, 1))
mlp_classifier = create_model_mlp((42))
# else:
# #Load the existing model (from a pickle dump)
# classifier = pickle.load(open('model.pickle', 'rb'))
tr_data, tst_data, tr_target, tst_target = train_test_split(data, target)
tr_data_lin = np.array(tr_data)
tr_data = tr_data_lin.reshape((tr_data_lin.shape[0], 6, 7, 1))
tst_data_lin = np.array(tst_data)
tst_data = tst_data_lin.reshape((tst_data_lin.shape[0], 6, 7, 1))
enc_target = one_hot_encoding(tr_target)
#print(tr_data, enc_target)
# train_model(cnn_classifier, tr_data, enc_target)
train_model(mlp_classifier, tr_data_lin, enc_target)
# pickle.dump([cnn_classifier, mlp_classifier], open('model.pickle', 'wb'))
训练数据和测试数据来自形状为(15000,42)的泡菜文件。