我想了解如何实现整洁的python,以便在每次预测后重新训练,因此每次预测后训练集的大小都会增加。
我正在尝试通过配置文件设置整洁的python,以在每次预测测试/看不见的设置后进行重新训练。例如,如果按我的理解,可以对XOR的“进化最小”示例进行调整,使其对部分数据进行训练(达到特定适应水平,获得最佳基因组),那么它将对设置的其他数据进行预测作为测试集。请参阅下面的代码,以了解我的意思:
from __future__ import print_function
import neat
import visualize
# 2-input XOR inputs and expected outputs. Training set
xor_inputs = [(0.0, 0.0, 0.0), (0.0, 1.0, 0.0), (1.0, 1.0, 1.0), (0.0, 0.0, 1.0), (1.0, 1.0, 0.0)]
xor_outputs = [(1.0,), (1.0,), (1.0,), (0.0,), (0.0,)]
# Test set
xor_inputs2 = [(1.0, 0.0, 1.0), (1.0, 1.0, 0.0), (1.0, 0.0, 0.0)]
xor_outputs2 = [(1.0,), (0.0,), (0.0,)]
def eval_genomes(genomes, config):
for genome_id, genome in genomes:
genome.fitness = 5
net = neat.nn.FeedForwardNetwork.create(genome, config)
for xi, xo in zip(xor_inputs, xor_outputs):
output = net.activate(xi)
genome.fitness -= (output[0] - xo[0]) ** 2
# Load configuration.
config = neat.Config(neat.DefaultGenome, neat.DefaultReproduction,
neat.DefaultSpeciesSet, neat.DefaultStagnation,
'config-feedforward')
# Create the population, which is the top-level object for a NEAT run.
p = neat.Population(config)
# Add a stdout reporter to show progress in the terminal.
p.add_reporter(neat.StdOutReporter(True))
stats = neat.StatisticsReporter()
p.add_reporter(stats)
# Run until a solution is found.
winner = p.run(eval_genomes)
# Display the winning genome.
print('\nBest genome:\n{!s}'.format(winner))
# Show output of the most fit genome against training data.
print('\nOutput:')
winner_net = neat.nn.FeedForwardNetwork.create(winner, config)
count = 0
#To make predictions using the best genome
for xi, xo in zip(xor_inputs2, xor_outputs2):
prediction = winner_net.activate(xi)
print(" input {!r}, expected output {!r}, got {!r}".format(
xi, xo[0], round(prediction[0])))
#to get prediction accuracy
if int(xo[0]) == int(round(prediction[0])):
count = count + 1
accuracy = count / len(xor_outputs2)
print('\nAccuracy: ', accuracy)
node_names = {-1: 'A', -2: 'B', 0: 'A XOR B'}
visualize.draw_net(config, winner, True, node_names=node_names)
visualize.plot_stats(stats, ylog=False, view=True)
visualize.plot_species(stats, view=True)
配置文件为:
#--- parameters for the XOR-2 experiment ---#
[NEAT]
fitness_criterion = max
fitness_threshold = 4.8
pop_size = 150
reset_on_extinction = True
[DefaultGenome]
# node activation options
activation_default = sigmoid
activation_mutate_rate = 0.0
activation_options = sigmoid
# node aggregation options
aggregation_default = sum
aggregation_mutate_rate = 0.0
aggregation_options = sum
# node bias options
bias_init_mean = 0.0
bias_init_stdev = 1.0
bias_max_value = 30.0
bias_min_value = -30.0
bias_mutate_power = 0.5
bias_mutate_rate = 0.7
bias_replace_rate = 0.1
# genome compatibility options
compatibility_disjoint_coefficient = 1.0
compatibility_weight_coefficient = 0.5
# connection add/remove rates
conn_add_prob = 0.5
conn_delete_prob = 0.5
# connection enable options
enabled_default = True
enabled_mutate_rate = 0.01
feed_forward = True
initial_connection = full_direct
# node add/remove rates
node_add_prob = 0.2
node_delete_prob = 0.2
# network parameters
num_hidden = 0
num_inputs = 3
num_outputs = 1
# node response options
response_init_mean = 1.0
response_init_stdev = 0.0
response_max_value = 30.0
response_min_value = -30.0
response_mutate_power = 0.0
response_mutate_rate = 0.0
response_replace_rate = 0.0
# connection weight options
weight_init_mean = 0.0
weight_init_stdev = 1.0
weight_max_value = 30
weight_min_value = -30
weight_mutate_power = 0.5
weight_mutate_rate = 0.8
weight_replace_rate = 0.1
[DefaultSpeciesSet]
compatibility_threshold = 3.0
[DefaultStagnation]
species_fitness_func = max
max_stagnation = 20
species_elitism = 2
[DefaultReproduction]
elitism = 2
survival_threshold = 0.2
但是,这里的问题是,在测试集中进行每次预测后都不会进行任何重新训练。我相信配置文件中的参数是静态的,并且在训练过程开始后不能更改,因此,如果您的适应水平是基于训练集的正确分类的数量(这就是我要实现的目标,非常类似于这将是一个问题,因此,我想了解是否可以通过调整config文件中的设置来实现重新训练的模型。还是还有更多呢?
答案 0 :(得分:1)
如果我理解您的要求正确,那么就不能简单地在config_file中完成此操作。
config_file中定义的参数只是在更改模型直接遍历数据时发生的情况,从而进行预测而无需任何重新训练。
如果要在每次预测后对模型进行重新训练,则必须在eval_genomes
和/或run
函数中实现此功能。您可以在一个遍历每个基因组的循环中添加另一个for循环,以获取每个输出并重新训练模型。但是,这可能会大大增加计算时间,因为您不仅要获取输出,还要为每个输出运行另一组训练代。