我想导出固定估计器模型以与tensorflow服务一起使用,但是我看到的例子是我们必须声明 serving_input_receiver_fn 。 示例如下:
// Add event listener for opening and closing details
$('#example tbody').on('click', 'td.details-control', function () {
var tr = $(this).closest('tr');
var row = table.row( tr );
if ( row.child.isShown() ) {
// This row is already open - close it
$('div.slider', row.child()).slideUp( function () {
row.child.hide();
tr.removeClass('shown');
} );
}
else {
// Open this row
row.child( format(row.data()), 'no-padding' ).show();
tr.addClass('shown');
$('div.slider', row.child()).slideDown();
}
} );
我遵循了这个示例,我的代码是这样的:
$('#submit').click(function() {
fire_ajax_submit();
});
function fire_ajax_submit() {
// PREPARE FORM DATA
var formData = {
username : $("#username").val(),
password : $("#password").val()
}
var protocol = window.location.protocol;
var host = window.location.host;
var pathArray = window.location.pathname.split('/');
var pathName = pathArray[1];
$.ajax({
type : "POST",
contentType : "application/json",
url : protocol + "//" + host + "/" + pathName + "/auth/signin",
data : JSON.stringify(formData),
dataType : 'json',
cache : false,
success : function(data) {
//doSomthing
},
error : function(e) {
console.log("ERROR : ", e);
}
});
}
我模型的输入是:
feature_spec = {'foo': tf.FixedLenFeature(...),
'bar': tf.VarLenFeature(...)}
def serving_input_receiver_fn():
"""An input receiver that expects a serialized tf.Example."""
serialized_tf_example = tf.placeholder(dtype=tf.string,
shape=[default_batch_size],
name='input_example_tensor')
receiver_tensors = {'examples': serialized_tf_example}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
错误是:
feature_spec = {'user_id': tf.FixedLenFeature([1], tf.int64),
'item_id': tf.FixedLenFeature([1], tf.int64),}
def serving_input_receiver_fn():
serialized_tf_example = tf.placeholder(dtype=tf.string, shape=[None], name='input_tensors')
receiver_tensors = {'inputs': serialized_tf_example}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)