使用StandardScalar和KerasRegressors的make_pipeline

时间:2018-12-27 00:57:49

标签: python scikit-learn keras pipeline

我正在尝试使用以下代码来设置GridSearchCV纪元和batch_size:

jq -L $HOME 'include ".jq/url_decode"; ...

并出现以下错误:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, shuffle=False)

X_train2 = X_train.values.reshape((X_train.shape[0], 1, X_train.shape[1]))
y_train2 = np.ravel(y_train.values)

X_test2 = X_test.values.reshape((X_test.shape[0], 1, X_test.shape[1]))
y_test2 = np.ravel(y_test.values)

def build_model():
    model = Sequential()
    model.add(LSTM(500, input_shape=(1, X_train.shape[1])))
    model.add(Dense(1))
    model.compile(loss="mse", optimizer="adam")
    return model


new_model = KerasRegressor(build_fn=build_model, verbose=0)

pipe = Pipeline([('s', StandardScaler()), ('reg', new_model)])
param_gridd = {'reg__epochs': [5, 6], 'reg__batch_size': [71, 72]}
model = GridSearchCV(estimator=pipe, param_grid=param_gridd)

# ------------------ if the following two lines are uncommented the code works -> problem with Pipeline?
# param_gridd = {'epochs':[5,6], 'batch_size': [71, 72]}
# model = GridSearchCV(estimator=new_model, param_grid=param_gridd)


fitted = model.fit(X_train2, y_train2, validation_data=(X_test2, y_test2), verbose=2, shuffle=False)

我怀疑这与File "/home/geo/anaconda3/lib/python3.6/site-packages/sklearn/model_selection/_search.py", line 722, in fit self._run_search(evaluate_candidates) File "/home/geo/anaconda3/lib/python3.6/site-packages/sklearn/model_selection/_search.py", line 1191, in _run_search evaluate_candidates(ParameterGrid(self.param_grid)) File "/home/geo/anaconda3/lib/python3.6/site-packages/sklearn/model_selection/_search.py", line 711, in evaluate_candidates cv.split(X, y, groups))) File "/home/geo/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 917, in __call__ if self.dispatch_one_batch(iterator): File "/home/geo/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 759, in dispatch_one_batch self._dispatch(tasks) File "/home/geo/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 716, in _dispatch job = self._backend.apply_async(batch, callback=cb) File "/home/geo/anaconda3/lib/python3.6/site-packages/sklearn/externals/oblib/_parallel_backends.py", line 182, in apply_async result = ImmediateResult(func) File "/home/geo/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py", line 549, in __init__ self.results = batch() File "/home/geo/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 225, in __call__ for func, args, kwargs in self.items] File "/home/geo/anaconda3/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py", line 225, in <listcomp> for func, args, kwargs in self.items] File "/home/geo/anaconda3/lib/python3.6/site-packages/sklearn/model_selection/_validation.py", line 528, in _fit_and_score estimator.fit(X_train, y_train, **fit_params) File "/home/geo/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py", line 265, in fit Xt, fit_params = self._fit(X, y, **fit_params) File "/home/geo/anaconda3/lib/python3.6/site-packages/sklearn/pipeline.py", line 202, in _fit step, param = pname.split('__', 1) ValueError: not enough values to unpack (expected 2, got 1) 中的命名有关,但不确定是怎么回事。请注意,当我从代码中删除param_gridd并直接在new_model上使用GridSearchCV时,代码可以正常工作。

2 个答案:

答案 0 :(得分:1)

我认为问题在于KerasRegressor的适合参数的馈送方式。 validation_datashuffle不是GridSearchCV的参数,而是reg。 试试吧!

fitted = model.fit(X_train2, y_train2,**{'reg__validation_data':(X_test2, y_test2),'reg__verbose':2, 'reg__shuffle':False} )

编辑:      基于@Vivek kumar的发现,我为您的预处理编写了一个包装。

from sklearn.preprocessing import StandardScaler
class custom_StandardScaler():
    def __init__(self):
        self.scaler =StandardScaler()
    def fit(self,X,y=None):
        self.scaler.fit(X)
        return self
    def transform(self,X,y=None):
        X_new=self.scaler.transform(X)
        X_new = X_new.reshape((X.shape[0], 1, X.shape[1]))
        return X_new

这将帮助您实现标准缩放器以及创建新尺寸。请记住,我们必须先将评估数据集转换为fit_params(),然后使用单独的缩放器(offline_scaler())对其进行转换。

from sklearn.datasets import load_boston
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from keras.layers import LSTM
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
import numpy as np

seed = 1

boston = load_boston()
X, y = boston['data'], boston['target']

X_train, X_eval, y_train, y_eval = train_test_split(X, y, test_size=0.2, random_state=42)


def build_model():
    model = Sequential()
    model.add(LSTM(5, input_shape=(1, X_train.shape[1])))
    model.add(Dense(1))
    model.compile(loss='mean_squared_error', optimizer='Adam', metrics=['mae'])
    return model


new_model = KerasRegressor(build_fn=build_model, verbose=0)

param_gridd = {'reg__epochs':[2,3], 'reg__batch_size':[16,32]}
pipe = Pipeline([('s', custom_StandardScaler()),('reg', new_model)])

offline_scaler = custom_StandardScaler()
offline_scaler.fit(X_train)
X_eval2 = offline_scaler.transform(X_eval)

model = GridSearchCV(estimator=pipe, param_grid=param_gridd,cv=3)
fitted = model.fit(X_train, y_train,**{'reg__validation_data':(X_eval2, y_eval),'reg__verbose':2, 'reg__shuffle':False} )

答案 1 :(得分:1)

正如@AI_Learning所说,此行应该有效:

fitted = model.fit(X_train2, y_train2, 
                   reg__validation_data=(X_test2, y_test2), 
                   reg__verbose=2, reg__shuffle=False)

管道要求将参数命名为"component__parameter"。因此,在reg__之前加上参数即可。

但是,这不起作用,因为StandardScaler会抱怨数据尺寸。您会看到,当您这样做时:

X_train2 = X_train.values.reshape((X_train.shape[0], 1, X_train.shape[1]))
...

X_test2 = X_test.values.reshape((X_test.shape[0], 1, X_test.shape[1]))

您将X_train2X_test2设为3D数据。您已完成使其适用于LSTM的操作,但不适用于StandardScaler,因为这需要形状为(n_samples, n_features)的二维数据。

如果您像这样从管道中删除StandardScaler

pipe = Pipeline([('reg', new_model)])

尝试输入我和建议的代码@AI_Learning,它将起作用。这表明与管道无关,但与不兼容的变压器一起使用。

您可以将StandardScaler移出管道并执行以下操作:

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, shuffle=False)

std = StandardScaler()
X_train = std.fit_transform(X_train)
X_test = std.transform(X_test)

X_train2 = X_train.values.reshape((X_train.shape[0], 1, X_train.shape[1]))
y_train2 = np.ravel(y_train.values)

...
...