我正在DataLoader
中的DataSet
中制作一个PyTorch
。
从将所有dtype作为DataFrame
的{{1}}开始加载
np.float64
这是我的数据集类。
result = pd.read_csv('dummy.csv', header=0, dtype=DTYPE_CLEANED_DF)
准备from torch.utils.data import Dataset, DataLoader
class MyDataset(Dataset):
def __init__(self, result):
headers = list(result)
headers.remove('classes')
self.x_data = result[headers]
self.y_data = result['classes']
self.len = self.x_data.shape[0]
def __getitem__(self, index):
x = torch.tensor(self.x_data.iloc[index].values, dtype=torch.float)
y = torch.tensor(self.y_data.iloc[index], dtype=torch.float)
return (x, y)
def __len__(self):
return self.len
train_loader and test_loader
这是我的train_size = int(0.5 * len(full_dataset))
test_size = len(full_dataset) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(full_dataset, [train_size, test_size])
train_loader = DataLoader(dataset=train_dataset, batch_size=16, shuffle=True, num_workers=1)
test_loader = DataLoader(dataset=train_dataset)
file
当我尝试遍历csv
时。会引发错误
train_loader
相关问题:
https://github.com/pytorch/pytorch/issues/10165
https://github.com/pytorch/pytorch/pull/9237
https://github.com/pandas-dev/pandas/issues/21946
问题:
如何在此处解决for i , (data, target) in enumerate(train_loader):
print(i)
TypeError Traceback (most recent call last)
<ipython-input-32-0b4921c3fe8c> in <module>
----> 1 for i , (data, target) in enumerate(train_loader):
2 print(i)
/opt/conda/lib/python3.6/site-packages/torch/utils/data/dataloader.py in __next__(self)
635 self.reorder_dict[idx] = batch
636 continue
--> 637 return self._process_next_batch(batch)
638
639 next = __next__ # Python 2 compatibility
/opt/conda/lib/python3.6/site-packages/torch/utils/data/dataloader.py in _process_next_batch(self, batch)
656 self._put_indices()
657 if isinstance(batch, ExceptionWrapper):
--> 658 raise batch.exc_type(batch.exc_msg)
659 return batch
660
TypeError: Traceback (most recent call last):
File "/opt/conda/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 138, in _worker_loop
samples = collate_fn([dataset[i] for i in batch_indices])
File "/opt/conda/lib/python3.6/site-packages/torch/utils/data/dataloader.py", line 138, in <listcomp>
samples = collate_fn([dataset[i] for i in batch_indices])
File "/opt/conda/lib/python3.6/site-packages/torch/utils/data/dataset.py", line 103, in __getitem__
return self.dataset[self.indices[idx]]
File "<ipython-input-27-107e03bc3c6a>", line 12, in __getitem__
x = torch.tensor(self.x_data.iloc[index].values, dtype=torch.float)
File "/opt/conda/lib/python3.6/site-packages/pandas/core/indexing.py", line 1478, in __getitem__
return self._getitem_axis(maybe_callable, axis=axis)
File "/opt/conda/lib/python3.6/site-packages/pandas/core/indexing.py", line 2091, in _getitem_axis
return self._get_list_axis(key, axis=axis)
File "/opt/conda/lib/python3.6/site-packages/pandas/core/indexing.py", line 2070, in _get_list_axis
return self.obj._take(key, axis=axis)
File "/opt/conda/lib/python3.6/site-packages/pandas/core/generic.py", line 2789, in _take
verify=True)
File "/opt/conda/lib/python3.6/site-packages/pandas/core/internals.py", line 4537, in take
new_labels = self.axes[axis].take(indexer)
File "/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py", line 2195, in take
return self._shallow_copy(taken)
File "/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/range.py", line 267, in _shallow_copy
return self._int64index._shallow_copy(values, **kwargs)
File "/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/numeric.py", line 68, in _shallow_copy
return self._shallow_copy_with_infer(values=values, **kwargs)
File "/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py", line 538, in _shallow_copy_with_infer
if not len(values) and 'dtype' not in kwargs:
TypeError: object of type 'numpy.int64' has no len()
问题?
答案 0 :(得分:3)
我认为问题在于,在使用random_split
之后,index
现在是torch.Tensor
而不是int
。我发现向__getitem__
添加快速类型检查,然后在张量上使用.item()
对我来说很有效:
def __getitem__(self, index):
if type(index) == torch.Tensor:
index = index.item()
x = torch.tensor(self.x_data.iloc[index].values, dtype=torch.float)
y = torch.tensor(self.y_data.iloc[index], dtype=torch.float)
return (x, y)
来源:https://discuss.pytorch.org/t/issues-with-torch-utils-data-random-split/22298/8
答案 1 :(得分:1)
参考:
https://github.com/pytorch/pytorch/issues/9211
只需在.tolist()
行中添加indices
。
def random_split(dataset, lengths):
"""
Randomly split a dataset into non-overlapping new datasets of given lengths.
Arguments:
dataset (Dataset): Dataset to be split
lengths (sequence): lengths of splits to be produced
"""
if sum(lengths) != len(dataset):
raise ValueError("Sum of input lengths does not equal the length of the input dataset!")
indices = randperm(sum(lengths)).tolist()
return [Subset(dataset, indices[offset - length:offset]) for offset, length in zip(_accumulate(lengths), lengths)]
答案 2 :(得分:0)
为什么不简单尝试:
self.len = len(self.x_data)
len
与pandas
DataFrame
无须转换为数组或张量即可正常工作。
答案 3 :(得分:0)
我通过将PyTorch版本升级到1.3版解决了该问题。
答案 4 :(得分:0)
我总共有2298张图像。所以如果我按照以下方式做
[int(len(data)*0.8),int(len(data)*0.2)]
它抛出有问题的错误。 为
[int(len(data)*0.8)+int(len(data)*0.2)]=2297
所以我要做的是floor
和ceil
函数
[int(np.floor(len(data)*0.8)),int(np.ceil(len(data)*0.2))])
结果是2298,错误消失了
答案 5 :(得分:0)
在我的脚本中,我首先通过 dataset = TensorDataset(data_x, data_y)
创建一个 Tensordataset,然后使用 train_dataset, test_dataset = torch.utils.data.random_split(dataset, [train_size, test_size])
。这不会在以后的训练迭代中造成问题。