我想按年份绘制各种事件类型的相对死亡人数。
我可以处理ggplot中的各个方面,但是正在努力根据事件,年份和死亡人数来计算事件百分比。
Event Type Year Fatalities % by Event
(calculated)
----- ---- ---------- ----------
Storm 1980 5 12.5%
Storm 1981 9 22.5%
Storm 1982 15 37.5%
Storm 1983 11 27.5%
Ice 1980 7 70%
Ice 1981 3 30%
我有以下代码来计算它,但是该计算不适用于使用更高分母的%。
fatalitiesByYearType <- stormDF %>%
group_by(eventType) %>%
mutate(totalEventFatalities = sum(FATALITIES)) %>%
group_by(year, add = TRUE) %>%
mutate(fatalitiesPct = sum(FATALITIES) / totalEventFatalities)
我在做什么错了?
我的图表如下。我之所以包括这个,是因为我也很想看看是否有一种方法可以在ggplot中按比例显示数据。
p <- ggplot(data = fatalitiesByYearType,
aes(x=factor(year),y=fatalitiesPct))
p + geom_bar(stat="identity") +
facet_wrap(.~eventType, nrow = 5) +
labs(x = "Year",
y = "Fatalities",
title = "Fatalities by Type")
答案 0 :(得分:1)
也许我不明白您的问题,但是我们可以从这里开始:
library(dplyr)
library(ggplot2)
# here the dplyr part
dats <- fatalitiesByYearType %>%
group_by(eventType) %>%
mutate(totalEventFatalities = sum(FATALITIES)) %>%
group_by(year, add = TRUE) %>%
# here we add the summarise
summarise(fatalitiesPct = sum(FATALITIES) / totalEventFatalities)
dats
# A tibble: 6 x 3
# Groups: eventType [?]
eventType year fatalitiesPct
<fct> <int> <dbl>
1 Ice 1980 0.7
2 Ice 1981 0.3
3 Storm 1980 0.125
4 Storm 1981 0.225
5 Storm 1982 0.375
6 Storm 1983 0.275
您可以清楚地将所有内容合并到一个独特的dplyr
链中:
# here the ggplot2 part
p <- ggplot(dats,aes(x=factor(year),y=fatalitiesPct)) +
geom_bar(stat="identity") +
facet_wrap(.~eventType, nrow = 5) +
labs(x = "Year", y = "Fatalities", title = "Fatalities by Type") +
# here we add the % in the plot
scale_y_continuous(labels = scales::percent)
有数据:
fatalitiesByYearType <- read.table(text = "eventType year FATALITIES
Storm 1980 5
Storm 1981 9
Storm 1982 15
Storm 1983 11
Ice 1980 7
Ice 1981 3 ",header = T)