使用dplyr连接组内的所有行

时间:2016-10-14 01:39:43

标签: r dplyr tidyr

假设我有一个这样的数据框:

hand_id card_id card_name card_class
A       1       p          alpha
A       2       q          beta
A       3       r          theta
B       2       q          beta
B       3       r          theta
B       4       s          gamma
C       1       p          alpha
C       2       q          beta 

我想将card_id,card_name和card_class连接成每一级A,B,C的单行。所以结果看起来像这样:

hand_id  combo_1  combo_2  combo_3
A        1-2-3    p-q-r    alpha-beta-theta
B        2-3-4    q-r-s    beta-theta-gamma
....

我尝试使用group_by和mutate这样做,但我似乎无法让它工作

    data <- read_csv('data.csv')
    byHand <- group_by(data, hand_id) %>%
      mutate(combo_1 = paste(card_id), 
             combo_2 = paste(card_name),
             combo_3 = paste(card_class))

感谢您的帮助。

4 个答案:

答案 0 :(得分:9)

你很亲密!

library(tidyr)
library(dplyr)

data <- read_csv('data.csv')
byHand <- group_by(data, hand_id) %>%
    summarise(combo_1 = paste(card_id, collapse = "-"), 
              combo_2 = paste(card_name, collapse = "-"),
              combo_3 = paste(card_class, collapse = "-"))

或使用summarise_each

 byHand <- group_by(data, hand_id) %>%
        summarise_each(funs(paste(., collapse = "-")))

答案 1 :(得分:3)

以下是使用data.table

的其他选项
library(data.table)
setDT(data)[, lapply(.SD, paste, collapse="-") , by = hand_id]
#     hand_id card_id card_name       card_class
#1:       A   1-2-3     p-q-r alpha-beta-theta
#2:       B   2-3-4     q-r-s beta-theta-gamma
#3:       C     1-2       p-q       alpha-beta

答案 2 :(得分:0)

不熟悉loggedIn() ...所以这是我没有dplyr

的尝试
dplyr

这是输出:

df <- read_csv('data.csv')

res <- lapply(split(df, df$hand_id),function(x){
    sL <- apply(x[,-1], 2, function(y) paste(y, collapse = "-"))
    d <- data.frame(x$hand_id[1], rbind(sL))
    names(d) <- c("hand_id", "combo_1", "combo_2", "combo_3")
    return(d)
})
res <- do.call("rbind",res)
rownames(res) <- NULL

答案 3 :(得分:0)

如果您的数据中有 NA,您可以使用 na.omit() 内联 str_c()。如果您只想要不同的,unique() 也可以使用。

数据:

    hand_id card_id card_name card_class
  <chr>     <dbl> <chr>     <chr>     
1 A             1 p         alpha     
2 A             2 q         beta      
3 A             3 r         theta     
4 A            NA NA        NA        
5 B             2 q         beta      
6 B             3 r         theta     
7 B             4 s         gamma     
8 C             1 p         alpha     
9 C             2 q         beta      

代码:

data %>% 
      group_by(hand_id) %>% 
      summarize(card_id = str_c(na.omit(card_id), collapse = "-"),
                card_name = str_c(na.omit(card_name), collapse = "-"),
                card_class = str_c(na.omit(card_class), collapse = "-"))

输出:

hand_id card_id card_name card_class     
* <chr>   <chr>   <chr>     <chr>          
1 A       1-2-3   p-q-r     alpha-beta-the…
2 B       2-3-4   q-r-s     beta-theta-gam…
3 C       1-2     p-q       alpha-beta