高学习率使模型训练失败

时间:2018-12-23 02:30:18

标签: python tensorflow machine-learning neural-network deep-learning

我只是用张量流训练了一个三层的softmax神经网络。这是从吴德华的课程,3.11张量流。我修改了代码,以查看每个时期的测试和训练准确性。

当我提高学习率时,成本约为1.9,准确性保持1.66 ... 7不变。我发现学习率越高,发生的频率就越高。当learing_rate约为0.001时,有时会发生这种情况。当learing_rate大约为0.0001时,这种情况就不会发生。

我只想知道为什么。

这是一些输出数据:

learing_rate = 1
Cost after epoch 0: 1312.153492
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 100: 1.918554
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 200: 1.897831
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 300: 1.907957
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 400: 1.893983
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 500: 1.920801
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667

learing_rate = 0.01
Cost after epoch 0: 2.906999
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 100: 1.847423
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 200: 1.847042
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 300: 1.847402
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 400: 1.847197
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667
Cost after epoch 500: 1.847694
Train Accuracy: 0.16666667
Test Accuracy: 0.16666667

这是代码:

def model(X_train, Y_train, X_test, Y_test, learning_rate = 0.0001,
          num_epochs = 1500, minibatch_size = 32, print_cost = True):
    """
    Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX.

    Arguments:
    X_train -- training set, of shape (input size = 12288, number of training examples = 1080)
    Y_train -- test set, of shape (output size = 6, number of training examples = 1080)
    X_test -- training set, of shape (input size = 12288, number of training examples = 120)
    Y_test -- test set, of shape (output size = 6, number of test examples = 120)
    learning_rate -- learning rate of the optimization
    num_epochs -- number of epochs of the optimization loop
    minibatch_size -- size of a minibatch
    print_cost -- True to print the cost every 100 epochs

    Returns:
    parameters -- parameters learnt by the model. They can then be used to predict.
    """

    ops.reset_default_graph()                         # to be able to rerun the model without overwriting tf variables
    tf.set_random_seed(1)                             # to keep consistent results
    seed = 3                                          # to keep consistent results
    (n_x, m) = X_train.shape                          # (n_x: input size, m : number of examples in the train set)
    n_y = Y_train.shape[0]                            # n_y : output size
    costs = []                                        # To keep track of the cost

    # Create Placeholders of shape (n_x, n_y)
    ### START CODE HERE ### (1 line)
    X, Y = create_placeholders(n_x, n_y)
    ### END CODE HERE ###

    # Initialize parameters
    ### START CODE HERE ### (1 line)
    parameters = initialize_parameters()
    ### END CODE HERE ###

    # Forward propagation: Build the forward propagation in the tensorflow graph
    ### START CODE HERE ### (1 line)
    Z3 = forward_propagation(X, parameters)
    ### END CODE HERE ###

    # Cost function: Add cost function to tensorflow graph
    ### START CODE HERE ### (1 line)
    cost = compute_cost(Z3, Y)
    ### END CODE HERE ###

    # Backpropagation: Define the tensorflow optimizer. Use an AdamOptimizer.
    ### START CODE HERE ### (1 line)
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
    ### END CODE HERE ###

    # Initialize all the variables
    init = tf.global_variables_initializer()
    # Calculate the correct predictions
    correct_prediction = tf.equal(tf.argmax(Z3), tf.argmax(Y))

    # Calculate accuracy on the test set
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    # Start the session to compute the tensorflow graph
    with tf.Session() as sess:

        # Run the initialization
        sess.run(init)

        # Do the training loop
        for epoch in range(num_epochs):

            epoch_cost = 0.                       # Defines a cost related to an epoch
            num_minibatches = int(m / minibatch_size) # number of minibatches of size minibatch_size in the train set
            seed = seed + 1
            minibatches = random_mini_batches(X_train, Y_train, minibatch_size, seed)

            for minibatch in minibatches:

                # Select a minibatch
                (minibatch_X, minibatch_Y) = minibatch

                # IMPORTANT: The line that runs the graph on a minibatch.
                # Run the session to execute the "optimizer" and the "cost", the feedict should contain a minibatch for (X,Y).
                ### START CODE HERE ### (1 line)
                _ , minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X, Y: minibatch_Y})
                ### END CODE HERE ###

                epoch_cost += minibatch_cost / num_minibatches

            # Print the cost every epoch
            if print_cost == True and epoch % 100 == 0:
                print ("Cost after epoch %i: %f" % (epoch, epoch_cost))
                print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
                print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))
            if print_cost == True and epoch % 5 == 0:
                costs.append(epoch_cost)

        # plot the cost
        plt.plot(np.squeeze(costs))
        plt.ylabel('cost')
        plt.xlabel('iterations (per tens)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

        # lets save the parameters in a variable
        parameters = sess.run(parameters)
        print ("Parameters have been trained!")


        print ("Train Accuracy:", accuracy.eval({X: X_train, Y: Y_train}))
        print ("Test Accuracy:", accuracy.eval({X: X_test, Y: Y_test}))

        return parameters

parameters = model(X_train, Y_train, X_test, Y_test,learning_rate=0.001)

3 个答案:

答案 0 :(得分:1)

就梯度下降而言,

  1. 较高的学习率(例如1.0和1.5)使优化器朝着损失函数的最小值迈出更大的一步。如果学习率是1,则权重的变化会更大。由于步骤较大,有时优化器会跳过最小值,并且损失开始再次增加。
  2. 较低的学习率(例如0.001和0.01)是最佳的。在这里,我们将权重的变化除以100或1000,从而使其更小。结果,优化程序朝着最小值迈出了较小的步伐,因此不会轻易地跳过最小值。
  3. 较高的学习率可使模型收敛更快,但可能会跳过最小值。 较低的学习率需要很长时间才能收敛,但可以提供最佳收敛。

答案 1 :(得分:0)

在阅读其他答案时,我对某些观点仍然不太满意,尤其是因为我觉得可以(并且已经)很好地形象地看待此问题,以解决此处提出的论点。

首先,我同意@Shubham Panchal在回答中提到的大部分内容,他提到了一些合理的起始值:
高学习率通常不会结束您的收敛,而是会无限跳动解决方案。
学习率太低通常会导致收敛速度非常慢,并且您可能会做很多“额外的工作”。 在此信息图中可视化(忽略参数),用于二维参数空间: gradient descent with different parameters

您的问题很可能是由于如右图所示的“类似”。 此外,到目前为止,还没有提到这件事,因为最佳学习率(即使有这样的事情)在很大程度上取决于您的特定问题设置;对于我的问题,学习速度可能会与您不同,从而实现平稳收敛。不幸的是,仅尝试一些值来缩小范围也是有意义的,在此范围内您可以实现一些合理的结果,即您在帖子中所做的事情。

此外,我们还可以解决此问题的可能解决方案。我喜欢应用于模型的一个巧妙技巧是不时降低学习率。大多数框架中都有不同的可用实现:

  • Keras允许您使用名为LearningRateScheduler的回调函数来设置学习率。
  • PyTorch允许您像这样直接控制学习率: getSigningCertificate()
  • TensorFlow具有multiple functions,可让您相应地衰减。

简而言之,我们的想法是从一个相对的高学习率开始(我仍然更喜欢在0.01-0.1之间的值作为开始),然后逐渐降低它们以确保最终结束达到局部最小值。

还要注意,在非凸优化的主题上有一个完整的研究领域,即如何确保最终获得“最佳可能”解决方案,而不仅仅是陷入局部最小值。但是我认为这暂时不在范围之内。

答案 2 :(得分:-3)

当学习率更高时,融合可能会迅速发生。但是,当当前值与局部极小值之间的实际差距比学习率小得多时,模型将围绕局部极小值振荡而不会收敛。

当学习率非常小时,可能不会发生这种情况。但是融合将需要很多时间。因此最好使用最佳值作为学习率。