这里是how cart pendulum looks like
假设您有4个微分方程,它们代表动态系统的运动(摆锤),并使用 scipy.integrate.odeint 求解了这些方程10秒,间隔为0.01秒。
最后,您得到大小为(1000,4)的解矩阵。对于每个差异方程,您将获得1000个数据点。到目前为止一切都还好。例如,如果我绘制其中一种运动,则可以获得漂亮的图形。(下图显示了摆杆的运动(摆动))
但是,我不想制作无聊的图形,而是想制作一个动画来显示购物车的运动,就像史蒂夫·布伦顿(Steve Brunton)所做的那样,如下所示使用Matlab链接。 这是link of the cart-pend video!
================================================ =====================
为了使数字动画,我实际上试图用Python做史蒂夫·布鲁顿(Steve Brunton)在Matlab中所做的事情。但是结果只是冻结的数字,而不是移动的数字。实际上,如果我从Spyder IDE运行此脚本,我将在IPython控制台中获得1000个图形。(每个图形代表系统瞬时运动的快照,这是很好的。但是我只想要一个图形,上面有1000个固定帧。 )
我写了两个python脚本。一个仅用于绘制另一个图是解决差分方程并将结果馈送到另一个图。
此代码用于绘制动画人物。
from math import sqrt, sin, cos
import matplotlib.pyplot as plt
from matplotlib import animation
def draw_cart(states, m, M, L):
x = states[0] # Position of the center of the cart
theta = states[3] # Angle of the pendulum rod
#Dimensions
W = 1*sqrt(M/5) # Cart width
H = .5*sqrt(M/5) # Cart Height
wr = .2 # Wheel radius
mr = .3*sqrt(m) # Mass Radius
#Positions
y = wr/2+ H/2 # Cart Vertical Position
w1x = x-.9*W/2 # Left Wheel x coordinate
w1y = 0 # Left wheel y coordinate
w2x = x+(.9*W/2) # Right Wheel x coordinate
w2y = 0 # Right Wheel y coordinate
# Pendulum Mass x-y coordinates
px = x+(L*sin(theta))
py = y-(L*cos(theta))
#Identfying Figure
plt.figure()
plt.axes(xlim=(-5, 5), ylim=(-2, 2.5))
# Plotting the base line
line = plt.Line2D((-10, 10), (0, 0), color='k', linewidth=2)
plt.gca().add_line(line)
plt.hold(True)
# Shapes
rectangle1 = plt.Rectangle((x-(W/2), (y-H/2)), W, H, fill=True, color='b') # Cart
rectangle2= plt.Rectangle((px-(mr/2), py-(mr/2)), mr, mr, fill=True, color='r') # Pendulum mass
circle2 = plt.Circle((w1x, w1y), wr/2, fill=True, color='g') #Left whell
circle3 = plt.Circle((w2x, w2y), wr/2, fill=True, color='g') #Right whell
plt.plot((x, px), (y, py), 'k', lw=2) #Pendulum rod
#Adding shapes to the figure
plt.gca().add_patch(rectangle1)
plt.gca().add_patch(rectangle2)
plt.gca().add_patch(circle2)
plt.gca().add_patch(circle3)
# Showing the figure
plt.show()
plt.hold(False)
这是用于解决差异方程并将解决方案提供给上述代码的其他代码。
from math import pi, sin, cos
import numpy as np
from scipy.integrate import odeint
import draw_cart_pend_rt
import matplotlib.pyplot as plt
# System Parameters
m = 1
M = 5
L = 2
g = -10
d = 1
u = 0
def cart_pend_dynamics(states, tspan):
Sy = sin(states[2])
Cy = cos(states[2])
D = m*L*L*(M+(m*(1-(Cy**2))))
state_derivatives = np.zeros_like(states)
state_derivatives[0] = states[1]
state_derivatives[1] = ((1/D)*(((-m**2)*(L**2)*g*Cy*Sy)+(m*(L**2)*(m*L*(states[3]**2)*Sy-d*(states[1])))))+(m*L*L*(1/D)*u)
state_derivatives[2] = states[3]
state_derivatives[3] = ((1/D)*((m+M)*m*g*L*Sy-m*L*Cy*(m*L*(states[3])**2*Sy-d*states[1])))-(m*L*Cy*(1/D)*u)+(0.01*1)
return state_derivatives
def solution_of_cartpend(dt):
# Initial conditions to solve diff eqs
states = np.array([0.0, 0.0, pi, 0.5]) # Left to right, cart; position-velocity, pend mass; angle-angular velocity
tspan = np.arange(0, 10, dt)
state_sol = odeint(cart_pend_dynamics, states, tspan)
return state_sol
# Time Interval
dt = 0.01
solution = solution_of_cartpend(dt)
x_den, y_den = solution.shape
# Validating the solution
plt.axes(xlim=(0,10), ylim=(-10,10))
t = np.arange(0, 10, dt)
plt.gca().plot(t, (solution[:, 2]), 'b', label='theta1')
# Animating the figures
for i in range(x_den):
draw_cart_pend_rt.draw_cart(solution[i,:], m, M, L)